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CHAPTER 1. GENERAL INTRODUCTION 

Hypericin 

Hypericin (Figure 1a) is a polycyclic quinone which occurs naturally in the plant, 

St. John's Wort [1]. Hypericin possesses diverse biological activity and has achieved 

interest because it has been shown to inactivate the human immunodeficiency virus 

(HIV) [2-5]. The antiviral activity of hypericin has been shown to require light by Car

penter and Kraus[6]. The mechanism of this antiviral activity is still unclear but has 

been suggested to occur via a mechanism involving singlet oxygen since hypericin is 

known to produce singlet oxygen in high yields (Q.Y. = 0.71) [7]. 

Hypericin has been used as an antidepressant and has been used in folk-medi

cine against a variety of ailments [8]. Ingestion of hypericin causes a condition known 

HO 
HO 

a) b) 

Figure 1. a) hypericin b) stentorin 
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as hypericism, which is characterized by a hypersensitivity to sun light [9]. This condi

tion was first discovered in grazing animals who after ingesting St. John's Wort devel

oped lesions, fevers, and eventually death if left in the sun [9]. 

Hypericin is an extremely hydrophobic molecule, which is slightly soluble in po

lar protic and aprotic solvents. In the body, hypericin is thought to accumulate in glyco

proteins, cell membranes and other hydrophobic environments including the endoplas

mic reticulum and the Golgi apparatus [10]. In water hypericin is thought to form chain 

like aggregates from pH 2 to pH 10 [11]. 

Prior to our work little was known about the primary events that occurred after 

hypericin absorbed a photon of light. Hypericin's fluorescence lifetime has been deter

mined to be between 5.5 and 6.5 ns depending on solvent [12]. Its fluorescence quan

tum yield and intersystem quantum yield have been determined to be 0.29 and 0.71 

respectively in ethanol [12]. Yamazaki et al. performed time-correlated single photon 

counting and steady-state measurements in an effort to determine if inter- or intramo

lecular proton transfer was favored [13]. They concluded that no proton transfer takes 

place, although as we have noted the time scale they used was quite long [13, Chap

ters 3 and 4]. 

Cotton et al. have performed surface enhanced resonance raman spectroscopy 

(SERBS) to attempt to elucidate the vibrational modes in hypericin [14]. 

While the singlet state of hypericin has received little attention the triplet state of 

hypericin has been well studied. Jardon and coworkers have performed numerous 

studies in which they have determinined hypericin's triplet-triplet absorption spectrum, 

the quantum yield of intersystem crossing = 0.71 in ethanol), the quantum yield of 

singlet oxygen production in micelles (c])^ = 0.72), the quantum yield of singlet oxygen 

production in vesicles ((J)^ = 0.35), the effects on the triplet state and on ground state 
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absorption of hypericin-metal complexes, and tlie rate of diffusion of liypericin between 

vesicles [15]. 

In addition to Jardon's work on the triplet state, Angerhofer et al. have observed 

phosphorescence from hypericin at 1.2 K in ethanol [16]. They observed a single expo

nential decay time of 2.79 ms and a triplet-triplet energy level of 13190 cm"^ in good 

agreement with Jardon [15,16]. Malkin and Mazur have also measured triplet transient 

absorption spectra and the triplet lifetime of hypericin [17]. They report it to be single 

exponential (x = 4.3 |JS) at room temperature [17]. Their data suggest that in the ab

sence of oxygen hypericin can abstract a hydrogen atom, after undergoing excitation 

and intersystem crossing to the triplet state, resulting in the formation of a semiquinone 

species [17]. 

Weiner and Mazur also observed by EPR the formation of a semiquinone-like 

radical in the absence of oxygen [18]. Interestingly, the amplitude of the semiquinone-

like radical increased approximately 20 fold when hypericin was illuminated with light 

corresponding to its absorption spectrum [18]. In the presence of oxygen they were 

also able to observe the formation of superoxide radical by spin trapping techniques 

[18]. Diwu and Lown report similar results [19]. Redepenning and Tao report that 

hypericin is both a good reducing agent and a good oxidizing agent in the excited state 

[20]. 

Stentorin 

Hypericin is structurally similar to the chromophore stentorin. The only difference 

is that stentorin has two isopropyl groups(Rgure lb) [21]. The chromophore stentain 

is thought to confer upon stentor coeruleus its photophobic and phototactic response 
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[22], Song has observed that stentor coeruleus, a small oiliate, uses stentorin embed

ded in a protein to act as the ciliate's light sensing system [22]. He also observed a pH 

decrease of the surrounding solution upon illumination of solutions of stentorin embed

ded in its protein and of the stentorin chromophore imbedded in vesicles [23]. The 

ultrafast photochemical events of stentorin have been studied by Savikhan et al. and 

are similar to those that they obseved for hypericin [24]. 

What is most interesting about stentorin is that under low light flux stentorin is 

not toxic to stentor coeruleus , however under sufficiently high light flux stentorin can 

induce photodynamic effects [25]. 

Hypocrellin A (Figure 2) is a naturally occurring perylene quinone found in the 

parasitic fungus, H. Bambuase, in parts of the Peoples' Republic of China (PRC) and 

Sri Lanka [26]. Similarly to hypericin it is known to inactivate the HIV virus and this 

inactivation is light dependent [27]. Hypocrellin A has been used for many years in folk 

medicine in the PRC particularly against skin lesions [26]. 

Hypocrellin 

/ 

H3CO 

H3CO 

COCH3 

V 

Figure 2. Structure of hypocrellin A. 



www.manaraa.com

5 

Because hypocrellin A has been difficult to obtain in the west until recently, little 

has been known about its physical characteristics and photophysics. Hypocrellin A, 

similar to hypericin, is soluble in both polar protic and aprotic solvents but unlike hypericin 

it is also soluble in nonpolar solvents such as cyclohexane and benzene [28]. Diwu et 

al. have measured the fluorescence quantum yield and fluorescence lifetime in ben

zene ((j), = 0.14 and t, = 1.4 ns), the intersystem crossing quantum yield ((|),gjj = 0.86), 

and the quantum yield of singlet oxygen production ((t)^ = 0.83) [29]. They also suggest, 

by the use of structural analogs, that intramolecular proton transfer plays an important 

role in the shape of the fluorescence and absorbance spectra [28]. 

Hu et al. report the triplet transient absorption spectrum of hypocrellin A in cyclo

hexane [30] They observe that the triplet state of hypocrellin A decays monoexponentially 

with a decay time constant of 4-6 |js at room temperature [30]. They also determine, by 

quenching with azulene and perylene, that the triplet energy level of hypocrellin A is 

42.5 kcal [30]. It has also been reported that hypocrellin A produces superoxide, hy

droxy radical and hydrogen peroxide [26]. 

Photochemotherapy 

Photochemothetapy has emerged as a promising tool to combat various types 

of cancerous tumors and viruses such as herpes simplex and human immunodefi

ciency virus (HIV) [2-6,31]. Photochemotherapy occurs when a molecule, known as 

the photosensitizer, absorbs a photon of light and then interacts, either directly or indi

rectly, with a biologically important moiety on the tumor or virus, eventually killing it or 

rendering it useless to further damage against the host system. 

Two general types of photochemothetapy mechanisms are recognized in the 
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literature [32-35]. These are demonstrated graphically in Figure 3. In a Type I photo-

sensitization the photosensitizer interacts initially with the substrate disabling it via hy

drogen abstraction or a redox reaction [32-35]. The substrate may then form radical 

species which in turn may undergo further reaction with molecular oxygen or other 

substrates [32-35]. Some photosensitizers, such as acridines are known to intercalate 

in DNA and undergo addition reactions [36]. 

In a Type II photosensitization the photosensitizer interacts first with the ground 

state of molecular oxygen fXg-) forming singlet oxygen (^Ag) a highly reactive species 

[32]. Singlet oxygen then in turn becomes the toxic factor which goes on to disable the 

tumor or virus [32-35]. When oxygen is involved as a toxic factoi; photochemotherapy 

is generally referred to as photodynamic therapy 

Sens 

hi) 

Radicals 

O2 

oxygenated 
products 

Type I 

substrate or 
solvent 

Sens * 
(singlet or 
triplet) 

Type II 

O2 

L . . . . . .  

'A„02 

substrate 

oxygenated 
products 

Figure 3. Type I and Type II photosensitization processes. 
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Although there are some examples of photosensltizers that demonstrate only 

one type of photosensitizatlon, most photosensltizers can undergo both Type I and 

Type II processes [33,35]. Generally Type I photosensitizatlon is favored by low light 

flux, low oxygen tensions, large photosensitizer concentration, and close association of 

photosensitizer and the substrate [33,35] Type II photosensitizatlon is favored by high 

light flux and high oxygen tensions [33,35]. 

Some common photosensitizers that have been developed include photofrin II, 

furocoumarins, acridines, methylene blue (thiazines), and a host of porphyrins [36,37]. 

Photosensitizers can be delivered orally, injected, or applied topically [31]. An advan

tage of photosensitizers is that they are generally ineffective without light so that, if light 

is selectively applied and if the photosensitizer shows a much greater affinity for the 

diseased cells over healthy cells, then relatively few side effects result [31]. Some 

photosensitizers do, however, cause side effects if significant concentrations accumu

late in parts of the body accessible to light, such as those close to the skin. This is 

known as photosensitizatlon [9]. 

Paradoxically, the disadvantage generally is that light is necessary for the 

photosensitizer's toxicity which generally means some sort of incision must be made to 

allow the use of an external light source such as a fiber optic attached to a laser. Other 

disadvantages are that tumors have a tendency to be hypoxic, that is they lack a signifi

cant oxygen tension. This inactivates the Type II process [38]. 

Photochemotherapy and the development of better photosensitizers are active 

areas of research and some desirable properties of photosensitizers have been out

lined. These are [31-38]: 

1. The photosensitizer should have a much higher affinity to the tumor or virus 

particle over healthy cells. Advantage is taken of the hydrophobic or hydrophilic nature 
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of the virus or tumor in designing photosensitizers which prefer these environments. 

2. Photosensitizers that absorb towards the red end of the visible spectrum are 

preferred to those which absorb in the blue. Human tissue is most transparent to light 

between 600-900 nm (it transmits approximately 90% in this wavelength region) [39]. 

Red light penetrates tissue much deeper than blue light. This is particularly important 

in treatment of skin cancers. 

3. Photosensitizers are desired that undergo efficient intersystem crossing to 

the triplet state. The triplet state of photosensitizers has been implicated in most pho-

tochemothetapy because of its relatively long life time as compared to the singlet state. 

This allows diffusional quenching by molecular oxygen or time for the photosensitizer to 

interact with the substrate. 

4. Low tendency for aggregation at high concentration of the photosensitizer 

Aggregation can markedly change the photophysics of the photosensitizer and it has 

been observed that this can substantially reduce the amount of triplet state and subse

quently the amount of singlet oxygen produced. 

Photochemotherapy can cause widespread damage to biological entities. These 

include, but are not limited to [31-38]: 

1. Nuclear damage. Some photosensitizers, such as acridines, have an affinity 

for DNA and may intercalate or adhere to it. Once bound they can cause serious 

damage such as single-strand breaks and the formation of alkali-labile bonds. From a 

singlet oxygen point of view guanine is the favored target, it oxidizes much easier than 

cytosine, thymine and uracil. Psoralens can add across the 5,6- carbon-carbon bond 

of pyrimidines in DNA to form cycioadducts. 

2. Amino acids and proteins. Rve of the twenty amino acids are susceptible to 

degradation in photosensitized reactions. These are cysteine, histidine, methionine. 
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tryptophan, and tyrosine. The mechanisms vary with amino acid but involve both Type 

I and Type II reactions. Degradation of the amino acids can cause inactivation of the 

protein, particularly when it involves the active site. A large pH dependence has been 

observed on protein inactivation presumably because of the large conformational change 

that can result in the three-dimensional structure of the protein with pH. This can alter

nately hide or expose important, photodegradable moieties. In addition to degradation, 

cross-linking of proteins also occurs upon photosensitization. 

3. Membranes and lipids. Major damage can occur from the oxidation, either by 

a Type I or Type II process, of the cell membrane. Generally oxidation of lipids in the cell 

membrane allows the unabated influx of small ions which cause swelling and eventual 

bursting of the cell. 

It is often difficult to differentiate between Type I and Type II photosensitization 

[32-38]. There are a number of indirect tests which are applied to test whether photo

sensitization is occurring via a Type I or Type II mechanism. Most of these are de

signed either to enhance or quench singlet oxygen. In some cases it is possible to tell 

by the reaction products what type of mechanism is dominant. Cholesterol for example 

gives distinct products upon reaction with singlet oxygen as compared to hydroxy radi

cal or hydrogen peroxide [34]. However this is usually only feasible in cases where the 

only constituents are the photosensitizer and the substrate or efficient means of sepa

ration are available. 

Singlet Oxygen 

Since singlet oxygen is often cited as the toxic factor in so many photodynamic 

compounds it is useful to review some of its physical characteristics and its chemistry. 
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The ground state of molecular oxygen is a triplet state, ^1,^-. Its lowest excited state is 

^Ag, which is 22 kcal above the ground state [32]. This relatively low energy level is 

below the level of many dyes' singlet and triplet excited states which allows energy 

transfer to take place. 

Evidence of singlet oxygen reactions are often difficult to identify as the prod

ucts of its reactions are often difficult to isolate and are similar to those produced by 

hydroxide radical and hydrogen peroxide, two possible by-products of Type I photo-

sensitization and of further reaction of two singlet oxygen molecules with water [31-

38]. The most unambiguous test for singlet oxygen is the observation of phospho

rescence as relaxes to ^Xg-. This weak phosphorescence occurs at 1270 nm and 

detection methods have been developed to separate this from infrared phosphores

cence of the photosensitizer [34,38]. This, however, only indicates that singlet oxy

gen is present and not that it is a toxic factor 

Indirect evidence is often used to obviate singlet oxygen as a possible toxic 

factor. Singlet oxygen reacts with several visibly colored furans such as 1,3 diphenyl-

isobenzofuran and 2,5 diphenylfuran to form colorless products [31-38]. The reaction 

can be monitored via a decrease in absorption of the colored furan versus time to 

deduce the kinetics of singlet oxygen production and reactivity. Firefly luciferase {photi-

nus pyralis) has also been used as an assay for detection of singlet oxygen production 

[40]. Firefly luciferase is efficiently inactivated by singlet oxygen, presumably because 

of the oxygen binding site it possesses for oxidation of the luciferin substrate [40]. 

Decreases in luminescence as a function of photosensitization time can be used to 

deduce the kinetics of singlet oxygen production. 

Quenchers, which show specificity towards singlet oxygen such as B-carotene, 

sodium azide or DABCO are often used when singlet oxygen mechanisms are thought 
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to predominate [31-38]. A decrease in toxicity with increased quencher concentration 

is taken as evidence of a singlet oxygen mechanism. These quenchers however some

times do not work well in biological systems because of their compartmentalized nature 

[31-38]. That is, it is often difficult to insure that the quencher will be able to diffuse to 

the same places as the photosensitizer. An additional problem with quenchers is that 

they can quench the triplet state of the photosensitizer [31-38]. This will result in a 

decrease of both Type I and Type II mechanisms but can be incorrectly interpreted as 

proof of a Type 11 mechanism. 

The lifetime of singlet oxygen in HgO has been measured at 2-4 ps [31-38]. 

However singlet oxygen shows a marked increase of lifetime in DgO to 20-40 ps [31-

38]. Hence, running reactions in DgO and seeing a marked increase in inactivation has 

also been used as indirect evidence for singlet oxygen. This increase in inactivation is 

attributed to the increase in singlet oxygen's lifetime which allows it to be able to travel 

farther and increases the probability it can successfully oxidize a biological moiety. The 

best test, however, of whether singlet oxygen and hence a Type II mechanism is the 

toxic factor is to remove oxygen from the system 

Equine Infectious Anemia Virus (EiAV) and 

Human Immunodeficiency Virus (HIV) 

The virus used for determining the efficacy of photosensitizers in this disserta

tion was EIAV, a virus belonging to the family Retra/iridae and the sub-family Lentivir-

inea [41, 42]. Other retroviruses which are similar in morphology and structure are 

simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV) and human 

immunodeficiency virus (HIV) [41, 42]. The majority of the following discussion on 
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retroviruses and EIAV will center on HIV as the basis because of the vast amount of 

information, which has been accumulated recently given HIV's significance. 

One of the characteristics of retroviruses is their use of an RNA template for the 

synthesis of DNA [41, 42]. This is accomplished using reverse transcriptase (RT) [41]. 

The DNA synthesized by the RNA strands is then incorporated into the host cells' DNA 

genome where it is known as the provirus [41]. It is this feature that makes retroviruses 

so difficult to kill once they have infected a host. Retroviruses, as illustrated above, are 

not limited to human beings but infect large portions of the animal world. 

The viruses inflict a wide variety of damage. Some strains of retroviruses result 

in persistent infection that do not threaten the host system while other retroviruses 

(such as HIV) eventually weaken the immune system of the host leaving the host vul

nerable to other opportunistic viruses and foreign bacteria which left unchecked can 

eventually overwhelm the host [41,42]. 

Retroviruses are among the most complicated of viruses. They contain up to 9 

genes, parts of which are translated into a variety of enzymes necessary for the life 

cycle of the retrovirus once it infects the host cell. Some of the more important parts of 

the RNA are [41, 42]: 

Long terminal repeats (LTR) The LTR contains non-coding sequences of DNA. 

The LTR is important because it contains material important to reverse transcriptase 

and integration. It can be thought of as a type of "instruction manual" on how to put 

together the two strands of RNA. 

aaa gene The gag gene is transcribed as a full length RNA and is used to 

translate information necessary in producing a polyprotein that finally is used to make 3 

to 5 capsid proteins, a matrix protein, a capsid protein and a nucleic acid binding pro

tein. 
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pol gene The pol gene is used to produce the reverse transcriptase and inte-

grase proteins. 

env gene The env gene is used to mal<e the proteins which are inserted into the 

viral envelope, most notably gp120 and gp41 in HIV, which are used to bind to the host 

cell. 

These are the three genes have been best characterized. There are six other 

genes which have not been as well characterized but play equally important parts in the 

virus life cycle. 

The retrovirus life cycle can be broken down into the following and is shown 

graphically in Figure 4 [41-43]: 

1. Binding (or attachment) to host cell. Binding occurs through the gp120 

of the virus to the CD4 domain of the T-lymphocytes (helper cells). CD4 is a cell surface 

glycoprotein of 55 kDa molecular weight. Binding of the virus gp120 to CD4 is thought 

to occur in the D1 domain of CD4. 

2. Viral fusion of the retrovirus particle into the host cell. The binding of 

gp120 to CD4 causes a conformational change in the envelope glycoproteins. This 

conformational change exposes gp41 (gp45 in EIAV) which is where the major fusion 

peptide is thought to occur. This fusion peptide most likely provides a hydrophobic 

interface across which membrane lipids might flow thus fusing the virus particle to the 

cell membrane. An important side point is that for fusion to occur it is thought that 

gp120 (gp90 in EIAV) (and CD4) must be cleared from the membrane space, this is 

also a large conformational movement. 

3. Now that the cell and the virus have "fused" the reverse transcriptase 

can begin to synthesize DNA from the genomic RNA of the virus. It is still unclear 

where in the cell this occurs. There is some evidence that it occurs within a capsid of 
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the original virus in the cytoplasm of the cell. The synthesis of viral DNA from the 

genomic RNA of the virus is a complicated, but well understood process. Readers are 

referred to the sources listed above for complete details. 

4. Once the DNA has been completed it is inserted into the DNA of the 

host cell. Insertion Is not as well understood. Again the reader is referred to the sources 

above for available details. 

5. After insertion of the DNA into the host cell genome (where it is now 

called the provirus) the production of viral enzymes necessary for continued production 

of virus particles occurs along with other normal cell functions. 

6. mRNA which is created from the host cell genome and includes the 

provirus is transported out to the cytoplasm where it has two fates. The first is to be 

packaged into new virus particles and the second is to encode for the production of the 

surface proteins necessary for the virus particles. 

7. Virus particles then are thought to simultaneously assemble and bud 

through the cell membrane. The membrane of the virus is that of the host cell. 

It is possible to evaluate virus infectivity by observing syncytia formation. Syn

cytia formation (multinucleation of cells) occurs because cells are expressing the viral 

binding and fusion proteins on their plasma membranes. When these cells are mixed 

with uninfected cells with the proper binding site the binding proteins which are ex

pressed on the infected cells will bind to the uninfected cells and cause multinucle

ation. 
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Previous Work on the Mechanism of Hypericin's Antiviral Activity 

Hypericin's ability to inactivate HIV and related viruses was discovered by Meruelo 

and co-workers who also observed that mice, which were treated simultaneously with 

hypericin and friend leukemia virus, could have a 100% survival rate [2]. Unfortunately, 

this result could not be repeated and eventually was determined to be due to the mixing 

of hypericin and virus in light before administration to the mice [44]. Carpenter and 

Kraus discovered that hypericin's antiviral activity was dependent on light [6]. Of major 

importance to the direction of mechanistic studies was that hypericin did not directly 

inactivate purified reverse transcriptase [2-6]. 

Meruelo and co-workers attempted the first mechanistic studies of hypericin and 

pseudo-hypericin's antiviral properties [2,45]. Unfortunately, at the time of their stud

ies, they were unaware of the role of light in hypericin's antiviral activity so there is no 

mention of light flux or how long the samples were in a position to be illuminated. They 

did however make two important observations [45]: 

1. In cells which had been infected with murine RADLV, treatment with hypericin 

resulted in a substantial decrease in the release of mature viral particles. This would 

indicate some type of disruption of viral assembly, possibly with the proper assembly of 

the virus core or proteins associated with viral core assembly. 

2. When hypericin was introduced to mature virus particles it was able to inacti

vate the virus particle. 

Later work by Memlo et al. and Degar et al. showed that a loss of reverse tran

scriptase activity accompanied the inactivation by hypericin although the loss of RT 

activity was not due to direct inactivation of reverse transcriptase [3,5]. They observed, 

by Western Blot analysis, that the mobility of the major capsid proteins, p24 and the p24 
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precursor p55, was altered [3,5]. A band appeared with a molecular weight of 48 

kilodaltons which suggests a cross-linking of p24 and perhaps the inhibition of release 

of reverse transcriptase [3,5]. 

Lenard et al. attempted to compare the photodynamic effects of hypericin with 

rose bengal which also produces singlet oxygen in high yield and is known to associate 

with enveloped viruses [4]. They observed the following [4]; 

1. Hypericin and rose bengal both inhibited syncytia formation in CD4 cells 

when illuminated in the presence of HIV. 

2. Both rose bengal and hypericin appeared to inhibit viral fusion but not viral 

binding as they found evidence of hemagglutination. Lack of syncytia formation was 

taken as evidence for non-fusion. 

3. There was evidence of cross-linking of viral proteins. gp120 and gp41 were 

most easily cross-linked while p24, the protein associated with the genomic RNA was 

not as easily cross-linked. 

These results, while certainly evidence for some type of photodynamic inactiva-

tion are difficult to interpret because relatively high light flux and relatively long illumina

tion times (1 hour) were used. This can, as mentioned in the previous section, favor a 

Type II mechanism because of the high steady-state triplet concentration which can be 

made under high light flux. It is also curious that hypericin was better able to inactivate 

the virus than rose bengal even though rose bengal has a higher singlet oxygen quan

tum yield. In addition we have observed that rose bengal may possess significant Type 

I ability to inactivate viruses. 

Further information on the type of viruses that hypericin was effective against 

was provided by Tang et al. who observed that hypericin's antiviral activity was limited 

to enveloped viruses [46]. That is, hypericin seemed to be unable to activate viruses 
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that did not contain lipid membranes. Presumably this is due to hypericin being unable 

to associate with the virus before it forms aggregates in the aqueous solution because 

of hypericin's hydrophobicity [46]. 

Several groups attempted to determine what, if any, effect the polycyclic back

bone structure of hypericin has on antiviral activity [47,48]. Schinazi et al. found that 

anthraquinones with hydroxyl groups and sulfoxy groups adjacent to the carbonyl pos

sessed some antiviral activity [48]. However, no data was given about the use, if any, of 

illumination. Kraus et al. attempted a similar study, breaking hypericin into "pieces" 

with analogues such as emodin, mesonaphthobianthrone, and 4,9 dihydroxy 3,10 

perylenequinone [47], They observed no antiviral activity by any of the analogues 

although again no data is given about illumination of samples [47]. 

Weber et al. used fluorescence microscopy to follow the uptake of hypericin by 

cells [10]. They observed that hypericin initially concentrates in cytoplasmic mem

branes and over the course of time moves to intercellular membranous regions such as 

the Golgi apparatus and the endoplasmic reticulum [10]. 

Since hypericinism was first identified in grazing animals, a study by Senthil et 

al. was undertaken to examine hypericin's photodynamic effects in aqueous model 

systems [49]. They found that hypericin could inactivate lysozyme when bound to 

human serum albumin, that is that singlet oxygen or superoxide could travel to inacti

vate an enzyme [49]. In addition they found that hypericin embedded itself in the cell 

walls of red blood cell ghosts could cause photohemolysis and lipid peroxidation [49]. 

Andreoni et al. showed that when hypericin is irradiated with a dye laser it can 

kill epithelial cells derived from Fisher tat thyroid [50], thus showing that hypericin's 

photochemotheraputic effects can be extended to whole cells. Thomas and Pardini 

proved that that oxygen was necessary for hypericin to kill EMT6 mouse mammary 
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carcinoma cells [51]. 

Molecular Flashlight 

Photochemotherapy is limited, as mentioned previously, by the lack of signifi

cant levels of the proper wavelength light within the body and to a lack of specificity. 

Nature, however, has developed methods of light generation which have been utilized 

by insects, plants, and sea life [52,53]. Bioluminescence involves the enzymatic gen

eration of an excited state of a molecule, which can then decay radiatively, generally 

with a large quantum yield. Our model system is that of the north american firefly 

{photinus pyralis) because it has been extensively studied and it is relatively standard 

practice to incorporate the firefly gene into a variety of cells as an alternative to radio

isotopic labelling[52,53]. 

Generation of light in the firefly is highly efficient and occurs with a quantum 

yield of approximately unity [54]. Figure 5 illustrates the emission spectrum of the 

firefly overlapped on the absorption spectrum of hypericin. The region of overlap ex

tends for -100 nm indicating that firefly luciferase is an ideal emitter to use with hypericin. 

Figure 6 shows the important steps in production of light in the firefly system 

[52]. The first step is the binding of luciferase to luciferin, the unoxidized precursor to 

the emitter. The second step in the reaction is the addition of a single molecule of ATP 

to luciferin. It is important to note that ATP is not added as an energy source but as a 

good leaving group; It has been demonstrated that the reaction is not specific for ATP 

but that other leaving groups work as well [52.53]. The addition of the ATP causes the 

loss of two inorganic pyrophosphates to form a luciferyl adenylate. The third step is the 

addition of molecular oxygen which becomes energetically favorable because of the 
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Figure 5 a) Overlap of emission spectra of North American firefly {photinus 
pyralis) with the absorption spectra of hypericin in DMSO. b)Time dependence of fire
fly emission. 
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loss of AMR This results in the formation of a high energy unstable peroxide. The 

fourth step is the decomposition of the peroxide (by loss of CO^) to leave the oxyluciferin 

in an excited state. The oxyluciferin then decays radiatively from the singlet state via a 

CI EEL mechanism [55]. 

The wavelength of the firefly emission is pH dependent [56]. As the pH be

comes more acidic the firefly emission becomes redder indicating one or more ioniz-

able groups on the oxyluciferin emitter [56]. Gandelman et al. have studied both the 

steady-state and time-resolved emission of oxyluciferin and have identified which oxy

luciferin emitter corresponds to the change in emission wavelength (Figure. 7a) [56]. 

The production of oxyluciferin from luciferin is an irreversible process; as noted 

above, one photon of light is produced for every molecule of luciferin oxidized [52,54]. 

When a solution of luciferase, luciferin, Mg^^, and ATP are mixed the firefly lumines

cence results in a decay curve of light intensity an example of which is given in Figure 

5b. Its shape has been ascribed to inhibition by the oxyluciferin product and the kinet

ics of this have been variously described by competitive, uncompetitive and noncom

petitive inhibition. Most recently a study by Lemasters and Hackenbrock concluded 

that oxyluciferin was a noncompetitive inhibitor with respect to luciferin and ATP [57-

59]. The oxyluciferin product is not the only competitor for the firefly reaction, dehy-

droluciferin (Figure 7b), a nonemitting product of the decomposition of luciferin in air is 

known to be a competitive inhibitor [57-59]. Finally, White et al. and Branchini, et al. 

have both shown that derivatives of luciferin are also catalyzed by luciferase and result 

in the production of visible light, albeit of different wavelengths [60,61]. 
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Dissertation Organization 

The dissertation is organized as follows. Chapter 2 describes in detail the op

eration and maintenance of the 30 Hz transient absorbance spectrometer with which 

the measurements in Chapters 3 and 4 were performed. Chapters 3 and 4 discuss the 

primary photophysical events of hypericin and related analogs and raises questions 

about what was the dogma concerning hypericin's antiviral mechanism prior to our 

work. Chapter 5 discusses the role of oxygen in hypericin's antiviral activity against 

EIAV. Chapter 6 presents a means of incorporating a light source within the body as a 

way of selectively targeting virally infected cells. Chapter 7 shows that hypericin can 

acidify its environment upon optical excitation and discusses how this might be related 

to hypericin's antiviral properties. Chapter 8 compares the oxygen dependence of the 

antiviral activity of hypocrellin A, a natural product which is structurally similarto hypericin, 

with hypericin and finds that oxygen is absolutely required for hypocrelllin's antiviral 

acitivity. In addition, Chapter 8 finds that hypocrellin is unable to acidify its environment 

under the same conditions as hypericin. Chapter 9 is a general summary of our results 

and future projects related to this dissertation. 
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CHAPTER 2. OPERATION OF 30 HZ PUMP-PROBE 

TRANSIENT ABSORPTION SPECTROMETER 

Introduction 

Elucidating the primary photophysical events of hypericin and hypocrellin A de

pends on the generation of extremely short optical pulses. The development of 

modelocked solid-state and gas lasers has led to a source of stable, relatively short 

(<100 ps) optical pulses which can then be used to pump synchronously a dye laser 

[1 ]. Synchronous pumping refers to a dye laser whose cavity length has been matched 

to the repetition rate of the pumping laser. This leads to a condition of a "pulsed" 

population gain in the dye's lasing medium and to modelocking. The advantage of a 

dye laser over a solid-state laser is the relatively wide emission spectrum (approxi

mately 50 nm) of the organic dye, which allows tunability of the output pulse through the 

use of a birefringent filter. 

The disadvantage of a synchronously pumped dye laser is the relatively low 

energy per pulse, typically nanojoules. This becomes a disadvantage when it is neces

sary to take advantage of nonlinear effects such as self-phase modulation to produce a 

white-light continuum for two color pump-probe experiments and when large popula

tion changes need to be induced in a sample in order to observe small signal changes. 

The production of a white-light continuum results from the nonlinear reponse of the 

index of refraction in a medium such as water or CS2. In order to take advantage of this 

nonlinear reponse, large electric fields and hence large pulse energies are required. It 

is possible to circumvent this small pulse energy by amplifying the output of a dye laser 
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with an amplifier pumped by a regenerative amplifier. This can, when aligned properly, 

result in amplifications on the order of 10® of the incoming dye laser pulse which yields 

millijoules of energy per a picosecond pulse. 

The system described in this chapter is based on a design by Perry et. al. [2]. 

The laser system consists of four components (Figures 1 and 2, Tables 1 and 2). The 

first is the Antares laser, which is used to pump all of the other components. A dye laser 

is used for generation of tunable ~1 ps pulses. A regenerative amplifier is used as a 

source of high energy pulses and a dye amplifier is used as a gain medium for the dye 

laser pulses. Modifications will be discussed as will the basic theory behind the com

ponents used and the pump-probe experiment itself. 

One of the major advantages of the pump-probe experiment is that the time 

resolution of the experiment is determined by the pulse width of the laser pulse and not 

the detection equipment as in time-correlated single-photon counting. 

Antares 

A Coherent Model 76-s Antares laser system is used as the "m other" laser to 

pump all other laser systems. The Antares uses a Nd:YAG rod as the lasing medium to 

produce 25 W of power in TEMQO mode at 1064 nm. The Anatares is actively mode-

locked by a Coherent model 7600 mode-locker which produces 100 ps pulses at 76 

MHZ. Mode-locking is achieved by the application of radio frequencies which periodi

cally forces all of the longitudinal modes to oscillate in phase. We have modified the 

Antares by removing the original KTP doubling crystal and replacing it by a CSK Optronics 

SPIA-5 temperature controlled LBO doubling crystal. The LBO crystal is a more effi

cient doubling crystal and coupled with the temperature control is able to produce 5 W 
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Legend 

532 nm Antares 
and dye laser 

532 nm Regen. 

1064 nm Antares 
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0.9 Watts 

0.9-1.1 watts 

1 

to spectrometer 
:—^ 1 -2 mj 

Figure 1. Dye laser amplifier system used to generate ~ 1 ps 1-2 mJ pulses for use in 
the transient absorption spectrometer. Table 1 contains the details on the optics num
bered in this figure. 
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Figure 2. Schematic of transient absorption spectrometer. Table 2 contains details 
on the optics numbered in this figure. 
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Table 1. List of optics corresponding to figure 1. 

number Optic Substrate 

1 lens, f = 250 mm BK-7 
2 lens, f = -1000mm BK-7 
3 prism 
4 dye cell 
5 beam splitter, 10% BK-7 
6 mirror, 100%R at 532 nm high power YAG 
7 microscope slide 
8 lens, f = 125 mm BK-7 
9 lens, f = 500 mm Bk-7 

Table 2. List of optics corresponding to figure 2. 

number Optic Substrate 

1 lens, f = 100 mm BK-7 
2 lens, f = 75 mm BK-7 
3 lens, f = 50 mm BK-7 
4 lens, f = 100 mm (2 inch) fused silica 
5 lens, f = 125 mm (2 inch) BK-7 
6 lens, f = 150 mm BK-7 
7 lens, f = 200 mm fused silica 
8 KDP crystal 
9 rettoreflector 
10 beam splitter, 20% R, 80% T (vis) BK-7 

beam splitter, 50% R, 50% T (UV) BK-7 
11 mirror, 95% R (400-800 nm) 
12 mirror, 95% R (250 -800 nm) 
13 microscope slide 
14 cutoff filter 
15 10 cm water cell 
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of 532 nm as compared to 2 W produced by KTR The advantages of increased usable 

power out of the Antares are that the dye laser output is increased proportionally allow

ing better frequency doubling from the dye laser output in the time-correlated single 

photon counting dye laser and it acts as a fourth dye cell in the dye laser amplifier 

Regenerative Amplifier 

A Continuum model RGA60 30 Hz regenerative amplifier (regen) is used to pump 

the dye amplifier system. The regen is seeded by a portion (~ 10%) of the residual 

fundamental from the Antares; it amplifies a 100 ps 200 nJ pulse to approximately 200 

mJ at 1064 nm. Approximately 30 to 40 mJ of energy per pulse at 532 nm is produced 

via Second Harmonic Generation (SHG) in a KDP crystal. 

The regen works as follows: a seed pulse from the Antares is selected via a 

pockel cell. This seed pulse is switched into an oscillator cavity which acts as a gain 

medium. The seed pulse oscillates 7 times within the cavity to achieve maximum gain 

at which time it is switched out of the cavity via another pockel cell. The final gain to the 

pulse is provided by a single pass amplifier. The advantages of a regenerative amplifier 

besides the obvious gain in pulse energy is that the output is a stable, repetitive repro

duction of the input pulse, i.e. the temporal characteristics are retained. 

Dye Laser 

A Coherent model 702-1 dye laser is used in conjunction with a saturable ab

sorber to produce 1 nj ~1 ps pulses at 76 MHz. In the experiments described within this 

disertation the lasing medium was Rhodamine 6G in ethylene glycol and the saturable 
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absorber was DODCI in ethylene glycol. The dye laser is pumped synchronously by the 

Antares so that the iasing medium is "pulsed". Since the cavity length of the dye laser 

can be adjusted to match the repitition rate of the antares the stimulated emission 

collected in the cavity is amplified at intervals corresponding to the arrival of pulses 

from the Antares (the repitition rate). Shortening of the pulse from 100 ps to ~6 ps 

occurs because of the rapid depletion of the gain medium by the leading edge of the 

dye laser pulse [1]. This shortens the pulse by allowing preferential gain of the maxi

mum of the pulse as compared to the pulse wings. Further shortening to an approxi

mately 1 ps pulse is acomplished via a saturable absorber. The saturable absorber 

absorbs the leading edge of the pulse and leads further to preferential gain of the pulse 

maximum at the expense of the trailing edge. 

Dye Amplifier 

The design of the amplifier is based on that of Perry et. al. who realized that 

previous systems were limited by the long storage times of the dye amplifier medium 

when pumped by nanosecond regenerative amplifiers [2]. That is to say that when the 

regen pulse enters the dye amplifier it's energy is stored in the dye. If the regen pulse is 

long compared to the dye laser pulse then the dye amplifer medium will begin to relax, 

i.e. lose energy radiatively, and this fluorescence will in turn be amplified. This is known 

as amplified spontaneous emission (ASE). The resulting output of the dye amplifier is 

then a short pulse riding on top of a long pulse. Sizer et al., then Wokaun et al. recog

nized that this problem could be rectified by using a shorter pulse (much shorter than 

the storage time of the gain medium) to pump the amplifier [3,4]. This allows, when the 

timing is matched, for high gain (10®) with low ASE (<1%) because optimum amplifica
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tion is attained when the dye laser pulse enters the gain medium shortly after the maxi

mum of the regen pulse. Since the regen pulse is only 100 ps then only a small fraction 

of the energy is lost to fluorescence before the gain can be used to amplify the dye laser 

pulse. 

The Pump-Probe Experiment 

As mentioned previously the utility of the pump-probe experiment is that the 

time-resolution is not limited by the detection electronics but is simply determined by 

the pulse-width of the laser pulse. It should also be noted that the experiments per

formed on this instrument are known as "two-color" pump-probe experiments. This 

refers to the fact that the pump pulse and the probe pulse are not the same color. The 

utility of the two-color pump probe experiment lies in the increased probing range over 

the one color experiment and the absence of the coherent spike which is indicative of 

coupling between same colored pump and probe pulses in the one color experiment 

[1]. The experiment is done as follows; the output from the dye amplifier is split into two 

separate paths (Figure 2). One path includes a variable translation stage (Compumotor 

Model LX-L20-P54-AC) which is controlled by a personal computer through an IEEE 

interface, this path is refered to as the "pump". The other path length is fixed and 

includes a cuvette of water into which the beam is focused. This produces the afore

mentioned white-light continuum (self-phase modulation) and is refered to as the "probe". 

The percentage of light going into each path varies with wether the experiment is pumped 

in the ultraviolet (50% pump and 50% probe) or the visible (20% pump and 80% probe). 

Since the pump and the probe beam travel different paths and the pump beam is 

on a translation stage it is possible to vary the time between when the pump and the 
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probe arrive at the sample. When the probe beam is ahead of the pump beam (before 

"zero time") the probe beam is simply absorbed (if there is a ground state absorbance) 

or transmitted and no chemistry will be observed except for an attenuation of the probe 

beam by the normal ground state absorbance of the sample. "Zero time" occurs when 

the pump and probe beam traverse the same distance and enter the sample at the 

same time. When the probe beam arrives after the pump beam (after "zero time") the 

probe beam interrogates the change induced in the sample by the pump beam. These 

changes can take many forms some of which are: 

1. When probing in a region where there is a ground state absorbance 

the pump beam causes a decrease in the number of molecules in the ground state 

(which is to say that these molecules have been promoted to an excited state). Be

cause there are fewer molecules in the ground state there will be fewer molecules to 

absorb the probe beam and there will be an increase in transmission (or decrease in 

absorbance) of the probe beam as compared to before "zero time". This is commonly 

refered to as a bleaching of the sample. 

2. The molecules that were promoted to the excited-state also have a 

characteristic absorbance spectrum and it is possible to probe S-] to Sp absorbances. 

This is refered to as an excited-state absorbance. As the name implies it involves a 

decrease in transmission (or increase in absorbance) of the probe beam as compared 

to before "zsro time". 

3. If the molecule of interest posesses a sufficiently large radiative rate 

(fluorescence) it is possible to observe stimulated emission. Stimulated emission is 

emission which adds in phase to the probe beam. It will appear as an increase in 

transmission (decrease in absorbance) of the probe beam. Obviously it is difficult to 

differentiate between the bleaching of the ground-state and stimulated emission in a 
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signal. It is possible to rule out bleaching if an increase in transmission can be ob

served in a region where there is no ground-state absorbance. 

4. If the molecule makes photoproducts such as electrons, transient spe

cies, or tautomers it is possible to observe their excited-state absorbances or ground-

state absorbances depending on how they are fonned. These absorbances will obvi

ously compete with signals such as are obtained above. 

Generally all of these signals are present to some extent in a sample depending 

on the probe and pump wavelengths. They may, however, not all be observable due to 

their small amplitude or because of signal cancellation. 

Data is collected as a change in probe transmission versus stage delay. Know

ing that the speed of light is 2.998 x lO''^ cm/s allows calibration of the stage delay 

directly to time so that a trace of the kinetics can be acquired. It is customary in data 

handling to convert the change in probe transmission to change in absorbance by the 

relation: 

A = log(l,/l,) 1. 

Because in this manner the change in absorbance is directly propotional to a change in 

population of the sample. 

Since many of the processes we observe can be on the order of a few picosec

onds it is important to know the temporal characteristics of the pumping and probing 

pulse. The rise time of a kinetic trace is determined by the convolution of the probe and 

pump pulse (which in our case have identical pulse widths and are modeled by identi

cal pulses) and it has been shown that pulses shortened by a saturable absorber are 

approximately modeled by a double-sided exponential. Given this information the most 

accurate method for determining the pulse width for our experiment is to fit a bleach of 
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a standard molecule such as hypericin in H2SO4. We have chosen hypericin in H2SO4 

because it does not exhibit any transient behavior except a bleach when pumping and 

probing in areas of ground state absorbance. This bleach is instantaneous on our time 

scale so the rise time of the bleach allows us to extract temporal information about our 

pulse. The lifetime of hypericin in H2SO4 is 5.5 ns so that for the majority of our 

experiments the bleach will not decay on the chosen time scale (< 200 ps). Nile blue in 

ethanol has also been used as a standard, however we have occasionally observed a 

short decaying component (approximately 5-10 ps) which may result from vibrational 

relaxation. Because of this short component we use nile blue to maximize the spatial 

and temporal overlap of the pump and probe beams but use hypericin in H2SO4 as a 

standard for measuring the pulse width. 

Typically a guess of the pulse width is made and a double sided exponential 

pulse is generated via the program expgen.exe (Appendix 1).This pulse is then convo

luted with itself using the computer program SPECTRA (Copyright Savikan Software). 

This convoluted pulse (now refered to as the instrument function) is then used to fit the 

hypericin in H2SO4 curve using the computer program SPECTRA. The pulse width is 

varied until a satisfactory fit has been achieved which gives a good idea of the pulse 

width. If the pulse width is acceptable (< 1.5 ps) then the transient absorption spec

trometer is ready to perform experiments. 
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Alignment and Maintenance of 30 Hz System 

Antares 

As the antares drives both the regenerative amplifier and the dye laser it is of 

paramount importance that stable pulses are produced. Generally no more than 2-3% 

deviation in the power of the 532 nm beam can be tolerated. Output into the dye laser 

can vary between X and Y Watt. 

Achieving stable pulses from the antares involves several factors. 

1. Stable lamps. Lamps generally last from 200-400 hours. They ultimately 

determine the stability of the antares. 

2. Fine adjustment of cavity length. 

3. Fine adjustment of output coupler 

Items 2 and 3 should be done on a daily basis and usually are done several 

times during the day to account for drift and changes in temperature. In some cases 

the above adjustments will not result in a suitably stable laser. The following items 

should be tried one at a time until a stable laser pulse is achieved. 

4. Observation of pulse with the fast oscilloscope. 

a. Unhook external out from mode locker (the output is hooked to the 

trigger in of the regenerative amplifier). Hook this into the trigger input of the tektronix 

7T11A sampling sweep unit. 

b. Place detector at residual IR hole. Adjust detector so that between .1 

and .2 mA are displayed on amplifier. 

c. Measure pulse width to make sure it is between 70-100 ps. If pulse 

width is too wide shorten it by adjusting the cavity length. 

d. Observe "jitter" of pulse. This should be done immediately after turn
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ing the oscilloscope on because after the oscilloscope has been on for 10 minutes it 

introduces ifs own jitter to the pulse. Jitter should be less than 1%. That is the side to 

side deviation of the pulse should be small. To observe jitter it is necessary to shorten 

the time scale down to 100 ps. Jitter can sometimes be corrected by fine adjustment of 

the cavity length and the output coupler. 

Regenerative Amplifier 

The regenerative amplifer amplifies a seed pulse from the fundamental of the 

Antares. The output necessary for achieving good amplification in the dye amplifier is 

a minimum of .9 Watts (30 mJ) however it is easier to amplify with 1 to 1.1 Watts which 

the system is quite capable of achieving. Again the power should not deviate by more 

than 5% for stable amplification. The regen lamps last from 30 million to 70 million 

shots, with the best indicator of bad lamps being a substantial drop in power. 

Several adjustments are typical during a normal day of operation. 

1. A 15 minute warm-up period with the residual fromt the Antares going 

into the regen cavity, shutter open and output shutter closed is recommended before 

any adjustments are made. If after this warm-up period the system is not up to the 

desired output the following adjustments can be made. 

2. Adjustment of incoming 1064 nm beam from Antares into regen. Gen

erally when the system is running well only minor adjustments of the incoming beam 

should be necessary. Remember to be extremely carefull of the 1064 nm fundamental 

from the Antares when adjusting steering mirrors. 

3. Adjustment of the crystal angle can be made with the SHG toggle 

switch. 

4. Adjustment of the delay time between arrival of the seed pulse and the 
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amount of time the pulse oscillates (is amplified) in the cavity can be optimized with the 

delay screw. 

5. We have noticed that occasionally the power will start off in an accept

able range but will degrade after a half to one hour. Sometimes this indicates that part 

of the beam is being clipped, usually in the final amplifier or the KDP crystal assembly. 

The beam size and shape should be checked with burn paper and adjustments made 

accordingly. 

Occasionally complete realignment of the regen is necessary. The most impor

tant thing to remember is never adjust the oscillator cavity within the renerative ampli

fier! Realignment should involve the two steering mirrors external to the regen itself. 

Insure that the beam from the Antares is parallel to the table. Direct the beam into the 

regen using the steering mirror closest to the regen. Using the IR viewer or an IR card 

direct the beam into the pockel cell and makes sure it is not clipped as it passes. The 

beam then should be directed onto the final steering mirror which is inside the regen. 

From here it strikes the half wave plate and goes into the cavity. The beam then needs 

to be overlapped within the oscillator cavity using the steering mirrors not the oscillator 

cavity mirrors. At this point the regen should be turned on and signs of lasing should be 

noticed. If it does not lase continue to adjust the steering mirrors until lasing occurs. 

Note: At all times there should be a weak lasing from the oscillator cavity itself. Re

member that you are looking for an increase in this lasing (after it is doubled). If the 

oscillator cavity is not aligned refer to the regen manual. 

Dve laser 

The dye medium is usually rhodamine 6G/ethylene glycol which allows lasing in 

the range of 550 to 610 nm depending on the orientation of the birefringent filter. The 
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pump probe dye laser differs from the photon counting dye laser In that It does not have 

a cavity dump driver but Instead has a saturable absorber (DODCI/ethylene glycol). 

The saturable absorber is a dye which absorbs a portion of the light from the dye laser. 

The purpose of the saturable absorber is to shorten the pulse from ~6 ps to between 

0.8 to 1.2 ps. The saturable absorber works by absorbing the leading edge of the 

pulse, this sharpens the pulse and preferentially amplifies the shortened pulse. 

Typical working parameters of the dye laser, with saturable absorber, when pump

ing with ~1.6 W from the antares are 100 to 130 mW with a .8 to 1.2 ps pulse at 588 nm. 

If the dye laser Is being completely realigned it is best to empty the saturable absorber 

dye and replace with pure ethylene glycol. Without DODCI, but with the ethylene glycol 

jet, the power out of the dye laser with the above power from the antares should be 180-

200 mW with a 6 ps pulse at 588 nm. It Is best to absorb approximately 85% of the 

incoming Antares beam in the rhodamine dye jet. This can be measured using a power 

meter and carefully placing a mirror behind the jet and measuring the power of the 

Antares with the jet on and with the jet off. 

Amplifier 

The goal of the amplifier Is to achieve between 1 to 2 mJ of energy in a .8 to 1.2 

ps pulse. The amplifer medium Is kiton red in water The amplifier Is pumped by the 30 

Hz beam from the regen, so the resultant amplified dye laser beam Is amplified at 30 

Hz. Temporal and spatial overlap is critical in order to achieve the above energy, so 

there are means by which to vary both spatial overlap and temporal overlap in the 

system. 

The system consists of three dye cells which contain 2 mM and 1 M of kiton red 

respectively. Two beam splitters pick off -10% each of the regen beam for the first two 
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dye cells with the remaining beam being dumped into the final dye cell. If more than 

10% of the regen beam is dumped into the first two dye cells it is much easier to have 

competing amplified spontaneous emission (ASE) which will have a 100 ps pulse width 

and degrade the time resolution of the system. 

Initial alignment of the system should first include cleaning the optics with metha

nol and lens cleaning paper. Because of the high peak powers achieved by the regen

erative amplifer it is very easy to damage the optics. If the system has not been turned 

on for some time several basic things should be done. 

1. With the input to the regenerative amplifier closed, so only the weak 

lasing of the oscillator itself is used as the output, check the path of the regen to insure 

it is not missing any of the optics and to avoid dangerous scattering or stray beams. It 

is possible at this time to do a rough spatial overlap with the dye laser output in the 

amplifier cells. 

2. With the input still closed check where the optics hit the mirrors, lenses 

and prisms for any obvious damage to the optics. If the beam is striking a damaged 

optic, move the position so it does not strike the bad spot. 

3. Open the input to the regen so that full power is released to the optics. 

Check for bright spots which indicate bad spots on the optics. If losing significant 

power rotate or move the offending optic to bring power up. 

4. The regen beam should be level as it traverses the system. Proper 

adjustments should be made to insure the beam is as level as possible. 

5. It is very important that the regen beam and the dye laser beam are as 

colinear as possible as they enter the dye cell. Adjustments to colinearity should ini

tially be made with the input to the regen closed to avoid possible injury. The dye laser 

beam and the regen beam should be at the same height and the regen beam should hit 
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as close to the edge of the steering mirror as possible. 

6. Fine adjustment of the dye amplifier system can now be made. Initial 

amplification is usually best observed on a white piece of paper at the output of the dye 

amplifier. After amplification is observed place the power meter at the output and tune 

until maximum power is achieved (20-40 mW). 

7. The above adjustments have assumed that temporal overlap has not 

been lost. If after doing steps 1 to 6 several times without achieving appreciable ampli

fication ̂  if substantial changes were made in the optical path or materials (recall that 

light moves -30% slower through glass (i.e. prism)) it is probably wise to check the 

temporal overlap with an oscilloscope. 

8. Using the 400 Mhz scope on the 20 ns time scale with a photodiode 

attached in front of the first dye cell get both the regen pulse and dye laser pulse on the 

screen simultaneously. IMPORTANT: make sure suitable neutral density filters are in 

place so that you don't blow up the photodiode. With the oscilloscope you can tell if you 

are within 1 ns or so from temporal overlap. It is possible that you will see that the 

pulses overlap however, they still could be 2 to 3 hundred picoseconds off. 

9. Final temporal overiap can only be achieved by trial and error This is 

most easily done with two people. The first delay line which should be changed is the 

initial delay line. The line should be moved in both directions while watching the power 

meter. IMPORTANT: Moving the delay line over long distances can alter the spatial 

overiap of the system. Spatial overiap must be re-optimized to tell if significant im

provement has been made in the system. 

10. After the first delay line is optimized each delay line on the individual 

turning mirrors must be optimized as above. 

The above steps should allow the amplifier to achieve the necessary amplifica
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tion (1-2 mJ/pulse) to proceed with the experiment. 

Transient Absorption Spectrometer 

Figure 1 shows the optical arrangement for the transient absorption spectrom

eter. The spectrometer works as follows: The amplified dye laser beam is collimated by 

lenses 1 and 2. The beam is split by a 50/50 (ultraviolet) or 30/70 (visible) beam splitter 

Part of the beam (referred to hereafter as the pump) traverses to a retroreflector on a 

computer controlled translation stage. The remainder of the beam (referred to hereafter 

as the probe) traverses a fixed delay line. The probe beam is focused into a 5 cm cell 

containing water The purpose of this is to generate a white light continuum. Appropri

ate cutoff filters are placed to cut out residual laser line (usually around 588 nm). The 

remaining probe beam is then split with a microscope slide and these two beams (sig

nal and reference) are collimated and directed to the detection system. The signal 

beam passes through the sample and the reference beam passes below the sample. 

The pump beam takes a parallel path to the probe beam so that it can be over

lapped spatially within the sample with the probe beam. Because the pump and probe 

are not perfectly colinear the probe diverges away from the entrance slit of the mono-

chromator however care should be taken to block the beam as completely as possible.to 

avoid stray reflections into the monochromaton 

All beams should pass through (as much as possible) the center of the optics. 

Slight deviation, from day to day alignment of the dye amplifier, can cause the beams to 

not pass through the center of the optics and can change the position of "time zero". 

The detection system consists of a monochromator (Jarrell Ash Model AZ-410) 

to select the desired wavelength and two photodiodes, one of which collects the signal 

and one which collects the reference. Splitting the probe beam into a signal and refer
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ence allows shot-to-shot normalization of the data. This can, if the system is aligned 

correctly, correct for the noise fluctuation in the dye amplifer pulses. The signal from 

each diode passes into a preamplifier (EG&G ORTEC model 142) and finally to an 

amplifier (EG & G ORTEC model 571). The output from the amplifier is split, half is 

directed to an oscilloscope for real time monitoring of the reference and sample, and 

half is directed to the data acquistion board. The settings on the amplifier are those 

found in Table 3. A trigger from the regenerative amplifer is used to trigger the data 

acquisition board (DT2020) in a personal computer which then collects the signal from 

each diode. The computer program ASYST (Appendix 2) divides the signal by the 

reference and displays it on the screen as a function of the translation stage position. 

The trigger, from the regen, is fed into a delay box (EG & G ORTEC model 416A) prior 

to the data acquisition board so that the trigger can be delayed properly to insure that 

the peak of the signal is acquired. Typical settings for the delay box are found in Table 

3. 

Initial set-up includes insuring that all the optics are clean and that beams are 

passing fully through the optics. Assure that the signal and the reference are properly 

entering the monochromator. Signal from the photodiodes should be monitored simul

taneously to data collection by an oscilloscope. Appropriate neutral density filters should 

be placed in front of the entrance slit of the monochromator to prevent saturation of the 

photodiodes. Signal ranges from .5 to 10 Volts depending on the wavelength being 

monitored. The reference and the sample beam should be separated by approximately 

.75 cm at the entrance slit. The sample beam can be moved independently of the 

reference by using the microscope slide (13 in Figure 2). 

If setting up the system from a long down period it may be necessary to take the 

top off the monochromator and the photodiodes off the exit slit in order to insure the 
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beams are passing correctly through the system. 

Once the sample and reference pulses are observed on the oscilloscope check 

to insure that there is no bleed through of light into the photodiodes from the reference 

or the sample beam by blocking each beam and observing the complete dissapearance 

of signal corresponding to that beam. When this has been achieved observe the pulses 

to insure that they are "jittering" in sync. If one pulse is jittering wildly the light path 

through the monochromator is not optimized and the pulses should be moved until they 

jitter in sync. 

Table 3. Normal settings for detection electronics for the 30 Hz pump-probe experi

ment 

Ortec 571 Amplifier 

Amplifier Gain 
Coarse Gain 
Shaping Time 
BLR 

Ortec 416A Gate and Delay Generator 

Delay 4.4 jisec 
Width 0.5 [isec 
Amplitude 5 V 
Input positive 

0.5 
20 
0.5 usee 
auto 

Data collection 

As mentioned earlier data is collected by a data translation board connected to 

a personal computer The computer program ASYST (ASYST Technologies Incorpo
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rated) handles manipulation of data and screen operations. Use of the ASYST pro

gram is described in Appendix 2. 

Data collection involves finding "zero-time", insuring the pulse width is accept

able and checking the translation stage for flatness. Nile blue is used as a standard for 

maximizing overlap because it exhibits a large bleach, however hypericin in H2SO4 is 

used as a standard for checking pulse width and for checking flatness for reasons 

discussed earlier. Sample concentration should be between 0.3 and 0.7 O.D. units in a 

1 mm cell in the pumping region. The structure of nile blue and hypericin are shown in 

Figure 4 along with their respective absorption and emission spectra in methanol and 

sulfuric acid. 

If the system has been down for long periods of time move the retroreflector as 

far back as possible on the translation stage to insure that the pump pulse is behind 

"zero time". Overlap the pump beam and the probe beam in the sample cuvette as best 

as possible by eye. Block the pump beam with a piece of paper while observing the 

sample beam on the oscilloscope, there should be no change in the intensity of the 

sample beam. 

If there is an intensity change then the pump beam is ahead of the probe beam. 

Using ASYST move the translation stage back while observing the sample signal on 

the oscilloscope. Stop moving the translation stage when the signal diminishes. Re

start the program to find "time zero" and maximize the signal. 

If there is no intensity change of the probe beam when the pump beam is blocked 

then set the data collection program to a large step size (5 ps for example) and scan 

through the region. If a signal can be seen (i.e. an increase in transmission) then stop 

the program and maximize the signal using the diodes. That is while carefully adjusting 

the final two mirrors on the pump path watch the probe pulse on the oscilloscope and 
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try to maximize the signal. Once maximum signal has been achieved exit the program 

and rerun so "time zero" can be accurately determined. 

If no signal is observed stop the program by hitting any key before the transla

tion stage reaches the end of its run. Do not exit the program but allow the translation 

stage to sit. While observing the probe signal from the diode on the oscilloscope adjust 

the overlap to obtain maximum signal on the oscilloscope. If a pump dependent signal 

increase is observed exit the program and rerun the scan to determine "time zero". If 

no signal is observed then rerun the program with a larger scan step ̂  physically move 

the translation stage up to move "time zero" into the scan window. Practically speaking 

it is best to have "time zero" close to the rear of the translation stage to allow maximum 

scanning range on the translation stage. 

Once zero time is located it is possible to close in on it so that it occurs within the 

first 15 steps of the acquisition window. A time window should be selected (i.e. -20 ps, 

40 ps, 100 ps...) and a hypericin in H2SO4 scan should be run. Several examples of 

scans are shown in Figure 5. After a suitable hypericin in H2SO4 scan has been 

obtained several things should be done: 

1. The bleach should appear flat on any time scale 200 ps or shorter. 

2. The rise time should be 1.5 ps or shorter. 

3. The optical density change should be .2 or larger. This number de

pends on how many neutral density filters are in front of the pump beam. 

If the bleach is not flat on the appropiate time scale this means the pump beam 

is "walking" off the overlap with the probe beam in the sample as the pump beam 

translates. Fixing this requires making sure the pump beam is level going into the 

retroreflector and making sure the beam traverses the path level. Checking the walk of 

the pump beam should be done by projecting the beam across the room (being carefull 
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of stray beams) onto a white piece of paper. Draw circles around the beam on the 

paper and then allow the translation stage to go through it's nomnal distance while 

observing the spot. Adjust the incoming beam so that the spot remains in the same 

place for the entire scan. 

If the rise time is greater than 1.5 ps shorten the cavity length and/or add more 

DODCI to the saturable absorber tank. Be careful! of double pulses (wings) by always 

monitoring the pulse on the autocorrelator. An example of a double pulse in a hypericin/ 

HgSO^ is shown in Figure 5. Note that depending on the cavity length the second pulse 

can sometimes not be seen on the shorter time scales. Practically speaking it is pos

sible to observe a second pulse by watching the gain through the dye amplifier. Two 

pulses can be amplified and will give more power because of unused gain in the gain 

medium. By adjusting the cavity length it is possible to go from a maximum (two pulses) 

to a minimum (shortest pulse) back to a maximum (long pulse, more energy). This can 

assist when the second pulse is so small it cannot be seen on the autocorrelator. 

Now the following has been accomplished: 

1. Acceptable pulse energy 

2. Acceptable pulse duration 

3. Good overlap between pump and probe in sample 

4. Flat translation stage. 

At this point it is possible to run a real experiment. Accumulation of a "publish-

able" hypericin in H2SO4 bleach should be obtained in 2 scans. If this is not possible 

then either the laser system is to noisy or the system is not aligned properly into the 

diodes. An example of a scan taken with a properly aligned system is shown in Figure 

5a. Notice that the line is flat. This is a good measure of laser stability and diode 

alignment. 
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CHAPTER 3. OBSERVATION OF EXCITED-STATE TAUTOMERIZATION IN THE 

ANTIVIRAL AGENT HYPERICIN AND IDENTIFICATION OF ITS FLUORESCENT 

SPECIES 

A paper published in the Journal of Physical Chemistry^ 

F. Gai^, M. J. Fehr^, and J. W. Petiich^'^ 

Abstract 

The absorption spectra, fluorescence spectra, and fluorescence lifetimes of 

hypericin, an analog lacking hydroxyl groups, mesonaphthobianthrone, and 

hexamethylhypericin are obtained in aprotic and protic solvents. In aprotic solvents, 

mesonaphthobianthrone is nonfluorescent. In strong acids such as sulfuric or triflic 

acids, it becomes fluorescent. Furthermore, its spectrum is very similar to that of 

hypericin. Similariy, only in sulfuric acid does hexamethylhypericin afford absorption 

and emission spectra resembling those of hypericin. We therefore conclude that the 

fluorescent species of hypericin has one or both of its carbonyl groups protonated. 

The protonation equilibrium in both the ground- and the excited-state is discussed. 

The first detailed measurements of the primary processes in the antiviral agent, 

hypericin, are performed with picosecond resolution and a white-light continuum. Trans-

^Reprinted with permission from Journal of Physical Chemistry'iQBA,98, 5784. Copy
right © 1993 American Chemical Society. 
^Graduate students and Associate Professor, Department of Chemistry, Iowa State 
University. Steady-state measurements, synthesis, time-correlated single-photon count
ing measurements, and CCD measurements performed by M. J. Fehr. 
3 To whom correspondence should be addressed. 
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ient absorption measurements of hypericin witli ~1-ps resolution indicate that upon 

optical excitation a new species is created that absorbs in the range of roughly 580-640 

nm. This species exhibits a 6-12-ps decay, depending on the solvent. It is also ob

served that the stimulated emission signal, which arises from the fluorescent state, 

grows in with a time constant of 6-12 ps. Based upon the identification of the fluores

cent species as hypericin with one or both carbonyl groups protonated, the rise time for 

the appearance of the stimulated emission signal is attributed to excited-state 

tautomerization. 

Introduction 

The naturally occurring polycyclic quinone, hypericin (Figure 1), possesses im

portant and diverse types of biological activity [1]. It has been shown that hypericin 

deactivates the human immunodeficiency virus (HIV) [2-4]. Antiviral activity was dem

onstrated in a lentivirus closely related to HIV, equine infectious anemia virus (EIAV), to 

require light by Carpenter and Kraus [5]. In addition, hypericin is closely related, both 

structurally and spectrally, to the photoreceptor (Figure 1) of the protozoan ciliates, 

Stentor coerulus [6] and Blepharisma japonicum [7,8]. Although the singlet oxygen 

produced from hypericin [9,10] is toxic to S. coerulus under high light flux (-5000 W/ 

m2)[11]it is an open question whether the limited exposure to room light in the experi

ments of Carpenter and Kraus [5] was toxic to EIAV because of photosensitized gen

eration of singlet oxygen by hypericin or because of the presence of additional 

nonradiative decay processes of the excited states of hypericin. It is of fundamental 

importance to understand the role of light in the activity of hypericin and hypericin-like 

molecules. 
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Figure 1. Structures of (a) hypericin, (b) the hypericin deshydroxy analog, mesonaph
thobianthrone, (c) hexamethylhypericin, and, (d) and (e), the two possible structures 
[6] for the stentorin chromophore. 
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We provide the first detailed investigation that uses both ~1-ps time resolution 

and a white-light continuum to examine and to unravel the excited-state primary 

photoprocess of hypericin. In preliminary work, we have observed that hypericin pos

sesses an excited-state absorbance that has a rapid decay component of several pico

seconds [12]. The new excited-state absorbance (~580_650 nm, in methanol) is of 

particular interest due to the earlier observations and suggestions of Song and cowork

ers [11,13,14] that the excited states of hypericin-like chromophores produce protons 

upon photoexcitation. We had thus tentatively suggested that a contribution of the 

excited-state absorption observed in hypericin was due to a species that undergoes 

excited-state tautomerization [12], and we proposed that deprotonation of the tautomer 

results in the reported pH decrease. 

Because of the attention devoted to the light-dependent properties of hypericin 

and hypericin-like chromophores by a broad spectrum of investigators, namely those 

studying antiviral activity [2-5], synthetic pathways [39-43], and the directional responses 

of microorganisms [6-8], it is imperitive that a detailed picture of the primarv 

photoprocesses of hypericin be established. Such is the aim of this article, whose plan 

is as follows: 

1. Model compounds are investigated that demonstrate that a protonated car-

bonyl group is required in order to obtain hypericin-like absorption and emission spec

tra. 

2. Time-resolved absorption (stimulated emission) spectra and kinetics are pre

sented that indicate that the hypericin emission spectrum grows in on a 6-12-ps time 

scale. Based on the model compounds, the rise time for the appearance of the hypericin 

emission is taken as evidence for an excited-state proton transfer 

3. Our results and conclusions are discussed in the context of previous work on 
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hypericin and what is currently known about excited-state proton transfer reactions. 

We consider possible objections to our assignment of the excited-state reaction to pro

ton transfer 

Finally we note that observation of proton transfer on this time scale is of funda

mental importance because its measurement is accesible bv "standard" ultrafast spec

troscopic techniques. Consequently, theories of proton transfer can be tested using 

hypericin. 

Materials and Methods 

Hypericin was obtained from Carl Roth GmbH & Co. and used without further 

purification. Synthetic hypericin was also generously provided by Professor G. A. Kraus. 

Solvents were obtained from Aldrich. The hypericin analog, mesonaphthobianthrone 

(Figure 1), was prepared as described by Koch et al. [15]. 

In order to prepare hexamethylhypericin, hypericin (1 mg) was dissolved in 1 mi 

of N,N-dimethylformamide (DMF). Two equivalents of NaH were added, and the solu

tion was stirred. Evolution of a gas and a characteristic green color indicated removal 

of hydroxyl protons from hypericin. Excess CH3I was then added. This procedure was 

repeated 3 times No change in color occured upon addition of NaH the fourth time 

indicating complete removal of labile protons. The resulting solution was orange and its 

UV/VIS absorption spectrum agreed with that described in the literature [40]. 

Deuteration of hypericin was effected by two methods. The first was to equili

brate hypericin in a deuterated solvent such as CH3OD overnight or longer The sec

ond involved dissolving 0.5 mg of hypericin in 0.5 ml of CH3OD and adding 2 equiva

lents of NaOCH3 while stirring. A chararcteristic green color indicated removal of hy-
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droxyl protons. The solution was diluted up to 1 ml with CH3OD and consequently 

changed back to its normal red color indicating deuteration of the hypericin. The solu

tion was then allowed to equilibrate for two days. 

Fluorescence spectra were measured with a Spex Fluoromax at room tempera

ture. In certain cases, the spectra were analyzed by fitting to sums of log normal curves 

(see Figure 5 and Table II). The time-resolved absorption and time-correlated single-

photon counting experiments are performed with the apparatus described elsewhere 

[16-18]. Transient absorption spectra were obtained with a liquid nitrogen cooled 

charge-coupled device (CCD) (Princeton Instruments LN/CCD-1152UV) mounted on 

an HR320 (Instruments SA, Inc.) monochromator with a grating (1200g/mm) blazed at 

5000 A. The following protocol was employed. The CCD pixels were binned such as to 

allow simultaneous collection of both the probe and the reference beams, I and Iq 

respectively, of the transient absorption spectrometer. The signal was integrated for 30 

seconds. Absorption spectra were constructed from log(l/lo). These spectra were cor

rected by subtraction of background spectra obtained with a probe delay of -20 ps. 

Five such corrected spectra were then averaged together. Two succesive acquistions at 

-20 ps and -10 ps yield a flat baseline centered on zero when substracted from each 

other. Figure 8d compares the absorption spectrum taken at "t ime zero" of the dye nile 

blue in ethanol with its steady-state spectrum obtained with a Shimadzu UV-2101PC 

double-beam spectrometer. The agreement is excellent, especially when it is borne in 

mind that our laser system operates at 30 Hz and that we generate continuum with -1-

ps pulses. For the absorption and stimulated emission experiments, identical kinetics 

were observed whether the pump beam was rotated parallel, perpendicular, or at the 

magic angle (54.7°) to the probe beam. Unless otherwise indicated, experiments were 

performed at room temperature, 22°C. Sample concentrations for hypericin were ~4 x 
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10"® M for fluorescence measurements and ~5 x 10"® M for transient absorption mea

surements. 

Results 

I. Steady-State Absorption and Fluorescence Measurements 

A. Hypericin in Protic and Aprotic Solvents 

Figure 2a presents the absorption and fluorescence spectra of hypericin in DMSO. 

Table I presents absorption and emission maxima for various protic and aprotic sol

vents. The absorption and emission spectra display mirror symmetry. Figure 2b pre

sents the fluorescence and absorption spectra of hypericin in H2SO4. The shape of 

both fluorescence and absorption spectra are identical to those obtained in methanol 

and DMSO although red shifted by 60 and 50 nm, respectively. 

As will be discussed in more detail below, hypericin in water at pH values be

tween 3 and 11 is barely, if at all, soluble and is nonfluorescent. Figure 2c and Table I 

indicate, however, that hypericin in a 40 mM solution of B-cyclodextrin at pH 4.0 gives 

rise to fluorescence and absorption spectra very similar to those obtained in less polar 

solvents in which hypericin is soluble. B-Cyclodextrin is composed of 7 D(+)-

glucopyranose units joined by a-(1,4)-linkages. The result is a cyclic molecule with an 

inner diameter of -7.0 A and a depth of -7.0 A [19]. While such a cavity is too small to 

accomodate the entire hypericin molecule, which can be crudely approximated as a 

rectangle of dimensions 12.8 x 9.2 A, it is spacious enough to hold at least the corner of 

the molecule bearing the carbonyl group and the 3-hydroxyl group adjacent to it. There 
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Table I. Summary of Hypericin Photophysics 

solvent lifetime (ns) ^"^^^abs (nfTi) ^max^ 

DMSO 6.5 598 598 

CH3CN 5.5 594 594 

MeOH 5.5 588 588 

MeOH/IOmM HCP 3.5 580 580 

H2SO4 5.5 658 661 

H2O, pH 13^ 4.5 650 693 

40mM B-cyclodextrin'= -593 593 

® Song and coworkers [14] reported the fluorescence spectrum of hypericin in a 
mixture of ethanol and HCI (10 mM). While retaining mirror symmetry, the resultant 
fluorescence and absorption spectra are blue-shifted 8 and 18 nm from those obtained 
in methanol and DMSO, respectively. The spectrum in the alcohol/HCI mixture is quali
tatively similar to those obtained in protic and aprotic solvents. 

^ In water at pH < 3, hypericin is soluble but nonfluorescent. Above pH 11, 
hypericin is both soluble and fluorescent. 

The fluorescence intensity was too weak to permit an accurate determination 
of the excited-state lifetime. The solution was at pH 4.0. 
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4.0. 



www.manaraa.com

69 

are examples of B-cyclodextrIn forming complexes with both porphyrins [31] and pyrene 

[32]. It is likely that hypericin forms an inclusion complex with B-cyclodextrin under 

conditions (water at pH 4.0) where it is othenwise insoluble, and that this complex facili

tates proton transfer between the hydroxyl and the carbonyl groups, which is respon

sible for the distinctive visible absorption and fluorescence spectra. This result is sig

nificant because it implies that the photoreceptor complex in the protozoan ciliate S. 

coerulus, for which no x-ray structure exists, most likely efficiently shields the stentorin 

chromophore from an aqueous environment. 

B. Mesonapthobianthrone and Hexamethylhypericin in Protic and Aprotic 

Solvents 

In contrast to hypericin, its deshydroxy analog, mesonaphthobianthrone (Figure 

1) is nonfluorescent in the aprotic solvents DMSO (Figure 3a) and CH3CN. When, 

however, it is dissolved in a protic solvent such as methanol (in which it is only sparingly 

soluble), a fluorescence band appears with a maximum at 467 nm (Figure 3b). Finally, 

dissolving it in a strong acid such as sulfuric or triflic acid generates a fluorescence 

spectrum that has nearly the same shape as that of hypericin in DMSO and that is blue 

shifted from the hypericin spectrum by about 14 nm. Its emission maximum is 584 nm. 

These results demonstrate the importance of a protonated carbonyl group for produc

ing a fluorescent hypericin-like molecule. The visible absorption spectrum of meso

naphthobianthrone in H2SO4 is curious in that it resembles a blue shifted duplicate of 

its fluorescence spectrum and not its mirror image (Figure 3c), as is the case for hypericin 

in DMSO (Figure 2a). 

In DMF hexamethylhypericin both absorbs and emits in the visible (Figure 4b). 
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Its absorption spectrum is distinctly blue-shifted and broader with respect to that of 

hypericin in DMF (Figure 4a). Its emission spectrum is broad and structureless. In 

H2SO4, however, the absorption spectrum shifts to the red and acquires structure simi

lar to that of hypericin. Similarly, the fluorescence spectrum sharpens, and a distinct 

shoulder appears to the red of the maximum (Figure 4c). The change in going from 

DMF to H2SO4 as a solvent for hexamethylhypericin is visually quite striking. In DMF 

the solution is a faint orange color. In H2SO4, it takes on the pink color characteristic of 

all hypericin solutions. 

Regardless of the solvent (DMF H2SO4, or methanol) the fluorescence quan

tum yield of hexamethylhypericin is always at least 100 times less than that of hypericin 

in the corresponding solvent. We suggest that this result indicates the importance of 

intersystem crossing as a nonradiative process in untautomerized hypericin. 

C. Mesonaphthobianthrone: Probing Solute Heterogeneity Using Mixed Sol

vents 

In order to assess the extent of inhomogeneity in the ground and the excited 

states, we measured the fluorescence spectrum of mesonaphthobianthrone in varying 

H2S04/Me0H mixtures (Figure 5). At low H2SO4 concentrations (< 45 %), the emis

sion spectra are featureless and broad. At high H2SO4 concentrations (> 80 %), the 

emission spectra are essentially identical to that in pure H2SO4 and are characterized 

by narrower, sharper bands. The width and intensity of these bands, as estimated from 

a fit to a sum of log-normal functions, are summarized in Table II. The ground-state 

heterogeneity is also illustrated by the variation of the fluorescence spectra with re

spect to excitation wavelength. 
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Table II. Summary of Analog Photophysics In H2S04/Methanol (v/v) Mixtures 

%H2S04 T1 (ns) X2 (ns)®'" Il/l2= ll(fwhm) I2 (fwhm) 
(nm) (nm) (nm) 

45 1.8 (0.20) 15.5 582, 646 2.98 65.7 84.8 
48 2.0 (0.21)8.2 582, 625 1.93 377 55.5 
52 2.0 (0.22) 8.2 583, 630 2.12 42.0 54.2 

54 1.2 (0.62) 8.8 581,630 2.08 51.7 61.8 

56 1.5 (0.82) 12.0 581,626 1.92 43.3 56.2 
58 1.1 (0.82) 11.2 582, 629 1.98 43.7 55.4 
60 0.9 (0.87) 12.5 583,632 2.04 48.7 56.9 
80 1.3 (0.93) 15.1 586, 636 2.05 45.4 53.5 
100 (1.00) 15.0 586, 635 2.10 44.4 49.2 

^ Owing to the low solubility of mesonaphthobianthrone in these solutions, the 
fluorescence signal was in all cases very small. Hence only 3000-4000 counts could be 
collected in the maximum channel of any decay curve. This in combination with the use 
of a full-scale time base of 20 ns, which limits the dynamic range of the experiments, 
contributes to the uncertainty in the measured lifetime values. For purposes of discus
sion, we consider the short- and long-lived components to remain constant over the 
range of mixtures studied. Mixtures that are less than 45% H2SO4 afford very little or 
no observable fluorescence red of -580 nm. 

XQX = 288 nm; A,em 550 nm; 20°C. Under these detection conditions, the 
band at 467 nm, characteristic of pure methanol solutions is not observed. The species 
giving rise to this band has a fluorescence lifetime of -600 ps. The fluorescence life
times are thus fit to only a sum of two exponentially decaying components: F(t) = 
Aiexp(-t/ti) -I- A2exp(-t/x2), where A^ + A2 = 1. The value in parentheses is the ampli
tude of the longer-lived lifetime component. 

= I"! and I2 refer to the intensities of the bands at -580 and -630, respectively. 
The position of these bands is difficult to determine owing to the large width at lower 
concentrations of H2SO4. 
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D. Hypericin: Probing Solute Heterogeneity Using Mixed Solvents and pH 

As indicated in Figure 2b, hypericin in concentrated sulfuric acid is fluorescent. 

This fluorescence, however, is quenched upon adding water to the solution. A solution 

that is 33% water exhibits no fluorescence (Figure 6b). Figure 6c presents the absor-

bance spectra of hypericin at pH values below 3; Figure 6d, at pH values above 11. 

Although small changes in the absorption spectra are apparent at low pH, the changes 

are dramatic at high pH. 

There are two possible factors for the reduction of hypericin fluorescence upon 

the addition of water, both of which may contribute. As noted in Table I, hypericin is 

insoluble in water in the pH range from about 3 to 11. At low pH (< 3), hypericin is 

soluble but nonfluorescent. It is possible that at pH < 3 hypericin forms nonfluorescent, 

soluble aggregates. The decrease in fluorescence intensity of H2SO4/H2O mixtures 

as the amount of H2O increases (Figure 6b) may be attributed to a corresponding 

increase of such a nonfluorescent aggregate. Alternatively, the second explanation is 

that water forms very tight complexes with hypericin that prevent protonation of the 

carbonyl groups either from the internal hydroxyl groups or from external proton sources 

in solution. There is precedent for such a role for water: the presence of water has 

been argued to stop excited-state proton transfer in 7-azaindole [16,20]. Hydrogen bond

ing impurities are known to retard excited-state proton transfer in 3-hydroxyflavone 

[21,33]. 

While both of these arguments are plausible, it remains to be explained why 

hypericin exhibits weak fluorescence in basic solution (pH > 11, Figure 6d). Perhaps at 

high pH hypericin is less likely to form aggregates. Also, at high pH deprotonation of 

the 3 hydroxyl group produces an anion whose charge can be delocalized. Such an 
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Figure 6. Absorbance and fluorescence spectra of hypericin in mixtures (v/v) of H2SO4 
and water, (a) Changes in hypericin absorbance as a function of H2SO4 concentration, 
(b) Changes in hypericin fluorescence as a function of H2SO4 concentration; Xex = 
400 nm. The solution that is 33% H2SO4 is completely nonfluorescent and 
superimposable on the baseline. 
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Figure 6 (cont.) (c) Absorbance of hypericin at low pH. (d) Absorbance of hypericin at 
high pH. The titration in this figure most likely represents more than two species. Note 
that the dotted line whose maximum lies between the other two maxima is not obtained 
at an intermediate pH. In parts (c) and (d) the pH was adjusted with H2SO4 and KOH. 
In (d) the arrow indicates the fluorescence spectrum at pH 13.8. In each panel, the 
concentration of hypericin is held constant in order to ensure proper normalization of 
the data. 
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anion would of course also be produced upon intramolecular proton transfer to the 

carbonyl. 

Further investigation of both ground- and excited-state heterogeneity and the 

possibility of solute aggregation is afforded by both time-resolved fluorescence and 

absorption measurements, which are described below. 

II. Fluorescence Lifetimes and Anisotropy Decay 

Table I summarizes the fluorescence lifetimes of hypericin obtained in a variety 

of protic and aprotic solvents. The fluorescence lifetime is always single exponential 

and usually between 5 and 6 ns in duration. It is relatively insensitive to temperature. 

Arrhenius plots obtained from the fluorescence lifetime of hypericin in DMSO yield an 

activation energy of 0.55 kcal/mol. Mesonaphthobianthrone, in either sulfuric or triflic 

acid yields a single-exponential lifetime of 15 ns (^©x = 288 nm) either when collecting 

emission from both bands simultaneously or each band separatelv. 

Lifetime measurements (A-ex = 288 nm, A-gm 550 nm) w ere also performed on 

the mesonaphthobianthrone in mixtures of H2SO4 and MeOH. In the solvent mixtures, 

two lifetime components were obtained whose weights varied as a function of acid 

concentration (Table II), with the long component (15 ns) dominating at high H2SO4 

concentrations. 

Similar experiments (data not shown) were carried out with mesonaphthobian

throne in H2SO4/CH3CN solutions. The solutions, however, became extremely exo

thermic at high concentrations of H2SO4: and thus solutions with H2SO4 higher than 

30% were not investigated. The results were identical to those of the H2S04/Me0H 

experiments with the exception of the lack of a fluorescence band in the blue region of 
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the spectrum (-470 nm; see Figure 2). 

It has been suggested that in water hypericin forms nonfluorescent, high mo

lecular weight (> 8000) aggregates [22]. Since the molecular weight of hypericin is 

538, this corresponds to a complex of > 15 molecules. (Song, Yamazaki, and cowork

ers [36] have suggested that at moderately high pH hypericin forms dimers that are 

essentially nonfluorescent.) In order to determine that hypericin in the nonaqueous 

solutions in which it is fluorescent is not aggregated, we measured its fluorescence 

anisotropy decay in MeOH and DMSO. Because in all cases, using visible or ultraviolet 

excitation, within experimental error and using the appropriate time resolution, a limit

ing anisotropy equal to the theoretical limit (r(0) = 0.40) was observed and because the 

depolarization was complete within 15 ns (Figure 7), we conclude that high molecular 

weight aggregates are negligible in our experiments and that we are investigating pri

marily the monomer. The anisotropy decay of hypericin is described well by a sum of 

two exponentially decaying components. The more rapid of these is approximately 80 

ps in methanol (Figure 7a). In order to resolve this component and the limiting anisot

ropy accurately and in order to estimate the duration of the longest depolarizing event, 

the measurements were performed on two different time scales. The data in Figure 7b 

indicate that the slower event is characterized by a 7.1-ns time constant. Hypericin thus 

may be considered as an example of an approximately symmetric rotor in which two 

types of depolarizing motion may be observed. The 80-ps component most likely re

flects a spinning motion about an axis perpendicular to the plane of the molecule while 

the 71-ns component can be attributed to overall tumbling of the molecule. A simple 

calculation indicates that the longer of the two components we observe is consistent 

with such a motion. The rotational diffusion time [23], is given by 1/6D = Vri/kT, 

where V is the molecular volume, ti is the solvent viscosity, k is Boltzmann's constant, 
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Figure 7. Fluorescence anisotropy decay of hypericin in methanol, Xqx = 288 nm, A,em 
345 nm, 20°C. The measurements were performed with the apparatus employing a 

rotating analyzer polarizer described elsewhere [17] and using a full-scale time base of 
(a) 3 ns and (b) 15 ns. The results are as follows, (a) r(t) = 0.23 exp(-t/79 ps) + 0.18, 

= 1.4. The bump at -0.5 ns in the upper curve (parallel intensity) is due to the 
instrument function. 
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Figure?(cont.). (b) r(t) = 0.141 exp(-t/98ps)+ 0.003exp(-t/7100ps),x^ = 1-7. Similar 
results are obtained using visible (576 nm) excitation. Although the 15-ns time base is 
too coarse to resolve accurately the fast decay component and, more importantly, the 
limiting anisotropy demonstrates clearly that the curves for the parallel and perpendicu
lar intensities coalesce on this time scale. As discussed in the text, the duration of the 
slower component of anisotropy decay obtained from the fit, 7.1 ns, is reasonable for a 
sphere of the dimensions of hypericin undergoing rotational diffusion in methanol. 
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and T is tiie absolute temperature. Taking hypericin to be a sphere of radius 6.4 A, a 

rotational diffusion time of 1.5 ns is obtained for MeOH at 298 K. This time is certainly 

a lower limit since the effective molecular volume of hypericin would be expected to be 

larger owing to hydrogen bonding of the hypericin hydroxyl groups (in the bay region, 

most likely) to the solvent. 

Finally, given the inhomogeneity of the hypericin sample, the observation that in 

all cases where the appropriate time resolution is employed (Figure 7a) the limiting 

anisotropy of 0.40 is obtained indicates that the distribution of absorbing and emitting 

transition dipole momemts are all parallel, within experimental error 

III. Time-Resolved Absorption Measuremients 

A. Excited-State Absorption and Stimulated Emission 

Figures 8a-c present time-resolved spectra of hypericin upon optical excitation. 

At least three distinct events are apparent in Figure 8a: ground-state bleaching: ex

cited-state absorption arising from a newly generated species; and stimulated emis

sion. As we have demonstrated elsewhere [12], the species producing the new absorp

tion decays in 6-12 ps, depending on the solvent. The spectrum of the stimulated 

emission requires an identical time in order to be fully evolved. In CH3CN, this time is 

about 10 ps (Figure 8b). 

At longer wavelengths (Figure 8c) a broad photoinduced absorption is apparent 

in both hypericin and mesonapthobianthrone in all the solvents investigated. As we 

suggested elsewhere [12] and as we conclude below (see Figure 11), this broad ab

sorption arises from a solvated electron. The extent to which the spectrum shifts and 
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Figure 8. Time-resolved absorption spectra. 
(a) Excited-state spectrum of hypericin In DMSO at "time zero." The horizontal 

line is the control experiment obtained by making the probe precede the pump pulse. 
At negative delay times no signal is expected, as is observed. This spectrum should be 
compared to that taken for hypericin in methanol [12] in order to appreciate the spectral 
shift induced upon changing solvent. At least three events are observed. From shorter 
to longer wavelength they are: bleaching of the ground-state absorption {k < 630nm, 
compare with the steady-state absorption spectrum, Figure 2a); appearance of a new 
species giving rise to absorption (630 nm X 645 nm); and negative absorption 
(stimulated emission, X > 645 nm), which appears in a region where there is no ground-
state absorption and hence cannot be attributed to bleaching. 

(b) Growth of stimulated emission from hypericin in CH3CN as a function of 
time. Spectra are shown for a "zero-time" delay (pump superimposed on probe pulse) 
and a 10-ps time delay. 
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Figure 8 (cont.). 
(c) Excited-state spectrum of hypericin and mesonaphthobianthrone in DMSO 

at long wavelength (770 nm X 830 nm). As discussed in the text and in the caption 
to Figure 10, this broad absorbance in the red is attributed to a solvated electron that is 
produced biophotonically. 

(d) Test of the time-resolved absorption spectrometer by superimposing a spec
trum of nile blue in ethanol on one obtained with a conventional double-beam steady-
state spectrometer (- -). 
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overlaps that of the stimulated emission can render the determination of whether the 

electron is produced monophotonicaliy or biphotonically difficult [12]. 

Figure 8d presents a spectrum of nile blue taken with our transient absorption 

spectrometer superimposed upon a nile blue spectrum obtained with a conventional 

steady-state double-beam spectrometer. The agreement between the two is excellent 

and provides a high level of confidence in the results obtained from the time-resolved 

absorption apparatus. 

Tuning the probe wavelength to the absorption feature appearing in the region 

from 620-635 nm for hypericin in MeOH (a similar feature is present from 630-645 nm 

in DMSO) permits the observation of a rapid decay component of about 6 ps [12]. 

Because this excited-state species absorbs in a region where there is ground-state 

absorbance, bleaching measurements of the ground state of hypericin yield a finite rise 

time. Thus, measurement of the time required to bleach fully the ground state provides 

an alternative and, because of the larger signal, more accurate method of determining 

the lifetime of the short-lived excited state produced upon light absorption. Figure 9 

presents such ground-state bleaching measurements for hypericin in MeOH, MeOD, 

and DMSO. Within experimental error, deuteration of the solvent does not affect the 

decay of the excited state. Also, no isotope effect is observed when deuterated hypericin 

is used. A similar result has been reported for 3-hydroxyflavone [21] and for 

benzothiazole [24]. The absence of an isotope effect was used [24] to rule out tunnel

ing as the mechanism of proton transfer and to point out that vibrational degrees of 

freedom other than 0-H or 0-D are involved in the proton or deuteron transfer. 

The stimulated emission, to which we have referred above, arises from a fluores

cent excited-state species. Figure 10 demonstrates that the stimulated emission rises 

with time constants of 6.7 and 9.2 in MeOH and DMSO, respectively. (Figure 11 f indi-
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Figure 9. Time delay for the bleaching of hypericin at 22°C. 

(a) MeOH.Xex 
(b) MeOD, ^ex 

= 588nm and ^.probe =600 nm; A(t) = 0.1 0exp(-t/5.6 ps) - 0.21; 
= 588nm and A,probe =600 nm; A(t) = 0.07e xp(t/6.4 ps) - 0.16; 
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Figure 9 (cont.). 
(c) DMSO, Xex = 588nm and A,probe = 610 nm: A(t) = 0.23e xp(-t/9.6 ps) - 0.41; 
(d) H2SO4, A,ex = 588nm and Aprobe = 630 "f"- The bleaching is fully developed 

within the time resolution of the apparatus. This result argues for the protonation of 
both carbonyl groups of hypericin in the ground state. 

Struve and coworkers [29] have also observed a finite rise time for the ground 
state bleaching of stentorin. 
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cates a similar result for CH3CN.) Within experimental error, the time constants for the 

rise time of stimulated emission are identical to those obtained, from ground-state bleach

ing measurements, for the decay of the excited-state produced at time zero. We con

clude, therefore, that this excited-state species decays into the fluorescent species, 

which in turn gives rise to the stimulated emission. 

Comparison of the kinetics of the stimulated emission (Figures 10 and 11f) indi

cates that in all cases there is a component that appears instantaneously and decays 

in less than 2 ps. We argue below that this component results from the ground-state 

heterogeneity of hypericin: that is, from an equilibrium between the untautomerized (or 

normal) form and a partially tautomerized form. This component is not observed for 

hypericin or for the hypericin analog, mesonaphthobianthrone in concentrated H2SO4, 

where in the ground state the two carbonyl sites are expected to be protonated. It is 

possible that the fast component observed in the stimulated emission signal arises 

from vibrational relaxation of a "h ot" tautomer or other excited state. We tentatively rule 

out this explanation because the duration of the component is independent of excita

tion wavelength. 

Hypericin in H2SO4 (?Lex = 588 nm) exhibits only instantaneous bleaching (Fig

ure 9d) at probe wavelengths of 600, 630, 660, and 690 nm. The absence of a finite 

bleaching time for hypericin in H2SO/1 is significant. In the light of the discussion below 

and Figure 12. this result can be interpreted in terms of complete protonation of the 

carbonyl groups in the ground state. For hypericin in H2SO4 (A,probe = ^^5 nm), an 

absorbance is detected that does not decay on a 20-ps t ime scale. We have also 

investigated the transient spectra of mesonaphthobianthrone in both DMSO and H2SO4. 

In DMSO between 500 and 720 nm, no signal was detected. The inability to resolve 

absorption transients is consistent with the lack of steady-state fluorescence and dem-
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Figure 10. Kinetics of stimulated emission in hypericin. Note in each case the compo
nent that appears instantaneously. Compare these results also with the data for CH3CN 
(Figure 11f). 

(a) MeOH, = 588nm and A-ppobe = 645 nm: A(t) = 0.1 7[exp(-t/6.7 ps) -1] 
-0.14exp(-t/1.9 ps). 

(b) DMSO, A,ex = 588nm and A,probe = 658 nm: A(t) = 0.30[e xp(-t/9.2 ps) -1 ] 
-0.13exp(-t/1.9 ps). 
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onstrates the very short excited-state lifetime (< 1 ps) of the unprotonated species. 

Between 770 and 830 nm, a positive absorption feature was observed. In all cases, the 

long-lived transient absorbing at long-wavelengths is assigned to a solvated electron 

(Figure 11 and discussion below). 

B. Photoionization Is Biophotonic 

Previously we proposed that [12] hypericin (in methanol) produced photoelec-

trons; but we were unable to determine whether photoionization was monophotonic or 

biphotonic because of the overlapping spectral contributions of stimulated emission 

and absorbance from the solvated electron. Figure 11 presents a series of results that 

demonstrates that photoionization occurs in hypericin and that it occurs biphotonically. 

Excited-state absorption at 750 nm is demonstrated in hypericin in methanol 

upon photoexcitation. This absorption can be quenched by addition of acetone (1.0 M 

solution), an electron scavenger [25] (Figure 11a). The spectrum of this absorbing 

species in methanol is given in reference 12 and it is consistent with known spectral 

data for the solvated electron in methanol [26]. Furthermore, as a control experiment 

we demonstrate the production and quenching of solvated electrons from indole, which 

is known to photoionize [18,27] (Figure 11b). Whether photoionization occurs 

monophotonically is usually determined [18,27,28] by plotting the logarithm of the elec

tron yield (or something proportional to it, such as its optical density) against the loga

rithm of the pump intensity. The slope of the resulting line gives the number of photons 

involved in the ionization process. Although at low pump intensity the slope is 0.9 ± 0.3 

for hypericin in methanol, this result is not unambiguous evidence of monophotonic 

ionization because of the overlapping contribution of stimulated emission, which pro-
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(a) Hypericin in ( ) methanol and in ( ) methanol that is 1.0 M in 
acetone. Acetone is known to be an electron scavenger [25]. A-ex = 588 nm, ?iprobe = 
750 nm. 

(b) Indole, which is known to produce electrons monophotonlcallv [18,27]. Top: 
indole in methanol. Middle: indole in methanol that is 1.0 M in the electron scavenger, 
acetone. Bottom: probe pulse at negative delay to provide a baseline or control experi
ment. A-ex = 294 nm. 
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Figure 11 (cont.) 
(c) Plot of log A(t=0) 790 nm 'oQ'ex hypericin in methanol. = 588 nm. 

Although the blackened circles can be fit to a slope of 0.9 ± 0.3, the presence of stimu
lated emission in this spectral region renders interpretation of the slope ambiguous 
[12]. Note that at higher excitation or pump pulse energies, the points deviate from the 
line of approximately unit slope. The open circles represent a regime where the pump 
is so intense that the photoelectron signal begins to saturate. 

(d) Plot of log A(t=0)7go nm vs loglex for hypericin in DMSO. ?iex = 588nm. In 
this case, the blackened circles can be fit to a slope of 2.3 ± 0.3. The difference in slope 
between this example and that of methanol is most likely due to the spectral shifts 
induced by the solvents. Compare for example Figures 2a and 8a of this article with the 
corresponding Figures of reference 12. 
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Figure 11. (cont.) 
(e) Hypericin in CH3CN, Xex = 588 nm, Xprobe = 645 nm. 
(f) Hypericin in CH3CN, X,ex = 588 nm, A,probe = 645 nm. Here, liowever, the 

pump intensity in reduced by a factor of 10 with respect to that for the experiment in 
panel (e). A(t) = 0.1 9[exp(-t/11.2 ps) - exp(-t/)] - 0.1 9exp(-t/1.4 ps) + 0.025. 
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vides an apparent diminution of tlie electron absorption (Figure 11c). In DMSO, on the 

other hand, the ground- and excited-state spectra of hypericin are sufficiently different 

that the log-log plot yields a slope of 2.3 ± 0.3 (Figure 11d). 

Finally, another convincing piece of evidence for the biphotonic ionization of 

hypericin is the measurement of the kinetics of transient absorption in a region where 

both stimulated emission and electron absorption may be present (Figures 11e,f). At 

high pump intensities an initial strong transient absorbance is observed for hypericin in 

CH3CN. When the pump intensity is decreased by a factor of ten, all that is observed is 

the stimulated emission described above. 

Discussion 

A. Assignment of Excited-State Processes 

Figure 12 presents ground- and excited-state kinetic schemes for mesonaph-

thobianthrone that are consistent with the data. Time-resolved fluorescence measure

ments in H2S04/Me0H mixtures indicate the presence of two lifetime components, ~2 

and -15 ns, whose amplitudes change with acid concentration. The amplitude of the 

15-ns component increases with acid concentration. Furthermore, no rise time for fluo

rescence is observed for the mesonaphthobianthrone. Similarly, contrary to the case of 

hypericin, no measureable rise time is observed in the bleaching of the ground-state 

absorption and no rapid (6-12-ps) decay component is observed in the excited-state 

absorption of mesonaphthobianthrone. 

Bearing in mind these above results and noting that protonation of the carbonyls 

of mesonaphthobianthrone cannot arise from any intramolecular source and that the 
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fluorescence lifetime of mesonapthobianthrone is very short-lived, which is demon

strated by the absence of steady-state fluorescence in DMSO and the inability to ob

serve any excited-state aborption even with ~1-ps resolution, the ground-state equilib

rium is considered in terms of two parallel protonation equilibria. We propose that in the 

ground state, the unprotonated, the singly protonated, and the doubly protonated spe

cies exist together in equilibrium. Upon optical excitation, at time zero, this same ground-

state population is projected into the excited state in proportion to the relative extinction 

coefficients. We note that identical kinetic data are obtained using either excitation 

wavelengths of 294 or 588 nm. The short fluorescence lifetime of the unprotonated 

species prevents an excited-state equilibrium from being established with the singly- or 

doubly-protonated species. The argument against sequential ground-state protonation 

equilibria is that if, as we propose, the singly- and doubly-protonated species have 

lifetimes of 2 and 15 ns, respectively, then the 15-ns component would be expected to 

appear with an ~2-ns rise time, which is not observed. 

The case for hypericin is similar, but not identical to, that of mesonaphthobian-

throne. The fundamental difference is that the hydroxyl groups B to the carbonyls pro

vide an intramolecular source of protons that is lacking in the deshydroxy analog. Also, 

the observation of a finite ground-state bleaching time that corresponds with the decay 

time of an excited-state absorption and stimulated emission suggest that the protona

tion equilibria of hypericin are sequential. A possible explanation for the hypericin pho-

tophysics is the following. In the ground state, three species (at least) may coexist in 

equilibrium: the untautomerized or "normal" form, N; the monotautomerized form, MT; 

and the ditautomerized form, DT By analogy with mesonaphthobianthrone, DT corre

sponds to the species with the long (~6 ns) fluorescence lifetime. Because stimulated 

emission corresponding to a long-lived component does not appear instantaneously 
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(a) mesonaphthobianthrone 

Figure 12. Kinetic schemes for (a) mesonaphthobianthrone and (b) hypericin taking 
into account both ground- and excited-state species. The structures of mesonaphtho
bianthrone and hypericin are abbreviated; and only two of the six hydroxyl groups of 
hypericin are indicated in the Figure. The schemes presented are the simplest that are 
consistent with the experimental data. Because of the Irresolvably short excited-state 
lifetime of unprotonated mesonaphthobianthrone (a), an excited-state equilibrium is 
not expected to be established with either of its protonated forms. 
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N MT DT 

(b) hypericin 

Figure 12 (cont.). For the sake of completeness, we note that for the case of hypericin 
(b) it may be possible that N* undergoes a two-proton transfer reaction that converts it 
directly to DT*. In part (b) of this Figure as well as in Figure 1, the proton is shown to 
interact strongly with the carbonyl oxygen by means of a hydrogen bond. This interac
tion is reasonable given the rapidity of the excited-state process as well as the observa
tion that hydrogen-bonding solvents do not interfere with the rate of the process [37] 
(methanol and DMSO give qualitatively similar results), as is observed for example in 
3-hydroxyflavone [21]. It must be bome in mind, however, that the proton transfer reac
tion is a charge transfer process and that the tautomer is likely to possess some ionic or 
charge separated character which is oversimplified by the Figures presented here. In 
support of this ionic character is the observation that the time constant for the excited-
state process decreases with increasing solvent polarity [37]. 
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(within our resolution), we suggest that the population of DT in the ground state is 

negligible. On the other hand, the heterogeneity of the stimulated emission signal from 

hypericin in DMSO and CH3CN may be attributed to significant ground-state popula

tion of both N and MT. By analogy with mesonaphthobianthrone in DMSO, the normal 

form of hypericin is expected to have a very short fluorescence lifetime, whose duration 

can be estimated from the stimulated emission signals as 1-2 ps. An interesting obser

vation by Weiner and Mazur [30] that is consistent with this description (especially 

those aspects dealing with ground-state heterogeneity and photoinduced deprotonation 

of the hydroxyl group) is that hypericin in the absence of light yields an EPR signal that 

is enhanced upon illumination. They suggest that the EPR signal resembles that of a 

semiquinone radical. 

It is likely that N* undergoes a rapid one-proton transfer to produce MT* (Figure 

12). In order to produce a significant amount of MT*, the one-proton reaction would 

need to occur in 1-2 ps. (It is also possible that N* executes a double-proton transfer to 

form DT* directly.) In several systems excited-state proton transfer has been shown to 

occur on a time scale of hundreds of femtoseconds [21,24,34]. Of particular relevance 

to the problem of hypericin are the 1-(acylamino)anthraquinones [34] and disubstituted 

anthraquinones [35]. For example, Barbara and coworkers have shown that excited-

state proton transfer occurs in 10 0 fs in 1-(dichloroacetylamino)anthraquinone. 

We tentatively assign the 6-12 ps rise time in the stimulated emission signals to 

a one-proton transfer reaction converting MT* to DT*. We thus attribute the excited-

state species of corresponding decay time in the transient absorption measurements 

(reference 12 and Figure 9) to MT. There are three possible reasons why a 6-12-ps 

decay component is not observed in the stimulated emission data. The first is that in 

the ground state [N] > [MT]. The second is that at the probe wavelengths we employ. 
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the emission intensity of MT* is negligible compared to that of N* and DT*. The third is 

that if indeed the reaction N MT* occurs, the stimulated emission from MT* at the 

probe wavelength will be compensated for, at least partially, by the excited-state ab

sorption of MT*. 

Song, Yamazaki, and coworkers [36] have recently presented steady-state spectra 

and fluorescence lifetimes of hypericin under various conditions. They argue that the 

excited-state pKg of hypericin is larger than that of the ground state: 12.2 as opposed 

to 11.7 (Falk and coworkers [39] have made similar arguments). They also propose, 

based on comparison of the fluorescence spectra of related compounds, that hypericin 

has no substantial intramolecular hydrogen bonding. Consequently, they suggest that if 

excited-state proton transfer is an important nonradiative process in hypericin, such a 

process is intermolecular and not intramolecular. These conclusions clearly differ from 

ours. First, it is unlikely that the pKa of the fluorescent species of hypericin can be 

measured since it is formed from a species that decays in 6-12 ps. Determination of pK 

assumes that equilibrium can be established between the conjugate acid and base. 

Second, while comparisons with the spectra of analogs such as anthraquinones are 

instructive, they must take into account the nonaggregated species of hypericin exist

ing in both the ground and the excited states. Third, insofar as we are justified in using 

the fluorescence spectra of mesonaphthobianthrone and hexamethylhypericin in H2SO4 

to attribute the long-lived fluorescence in hypericin to a species with protonated carbo-

nyl groups, the presence of the 6-12-ps rise time for long-lived fluorescence in both 

aprotic and protic solvents demonstrates that in hypericin proton transfer occurs in the 

excited state and intramolecularly. Fourth, and most importantly, our observation of 

stimulated emission that rises in 6-12 ps into a long-lived species indicates that steady-

state fluorescence and conventional photon counting measurements do not measure 
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the primary photophysical events in hypericin. 

B. Potential Difficulties and Unresolved Questions 

There are several questions that arise from the results presented upon and from 

the conclusions drawn from them. We summarize them here and try to respond to 

them. 

1. A possible objection to the assignment of the excited-state process in hypericin 

to a tautomerization reaction is the observation of a "mirror symmetry" relationship 

between the fluorescence spectrum and the visible absorption spectrum (Figure 2). 

We suggest that the observation of a mirror symmetry between the emission and the 

absorption spectra is consistent with the excited-state proton transfer process if it is 

kept in mind that tautomerized hypericin, in the form of MT, already exists in the ground 

state. We argue that MT is similar enough to DT structurally that absorption by MT and 

fluorescence from DT* is what produces the mirror symmetry 

2. The assignment of the excited-state process to intramolecular proton transfer 

may be criticized because we do not observe an isotope effect. There is precedent for 

proton transfer processes that do not exhibit an isotope effect [21,24]. Whether an 

isotope effect is observed will also depend on such factors as the degree to which the 

reaction is nonadiabatic and characterized by tunneling through a potential barrier [38] 

or if the reaction occurs by means of a barrierless (or small barrier) process in which 

the role of vibrational motions other than the 0-H stretch are important. The solvent 

dependence of the time constant for the excited-state process is also consistent with its 

assignment to proton transfer. The time constant for the reaction decreases with in

creasing solvent polarity, as measured by Ej(30), which is consistent for a process that 
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involves the transfer of a charged particle, molecular rearrangement, and charge reor

ganization [38,45]. 

3. Construction of molecular models of hypericin and a recent x-ray structure 

[42] indicate that the aromatic polycycle is twisted. One might argue that the excited-

state transients observed reflect transitions from one fomn of conformational isomer to 

another. Because such a process involves a large amplitude motion, it would be ex

pected to be viscosity dependent. In solvents in which the viscosity changes by a 

factor of 60 we see, however, no more than a change of a factor of two in the time 

constant of the longer-lived excited-state transient (-6-12 ps). Furthermore, the rate of 

the excited-state process is completely uncorrelated to viscosity: the small variation in 

rate cited can be effected just a easily when the viscosity is increased by less than a 

factor of two, i.e. from methanol to acetonitrile [37]. This excludes the assignment to a 

conformational transition. 

4. The kinetic scheme indicated is not the only one consistent with the data, but 

it is, we believe, the simplest. There are quite likely more species involved than the few 

we have depicted. This is certainly suggested by the complexity of the steady-state 

spectra presented. In particular, we must note that tautomeric forms of DT can exist 

with the proton being donated from the "upper right" and the "lower left" hydroxyl groups 

as well as by the "upper left" and "lower left" hydroxyl groups, as indicated in Figure 12. 

5. A problem for which at present we do not have a completely satisfactory 

response is why we observe no emission from MT*. It may be that there is not a large 

enough population of the species to be detected in the midst of all the other transients 

observed. This question requires further investigation. 

6. We have tentatively assigned the rapid decay of N* to formation of MT*. 

Other nonradiative pathways such as internal conversion are also a possibility as is 
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demonstrated by the anthraquinones [34,35]. We note, however, that both the triplet 

yield and the fluorescence quantum yield of hypericin have been reported to be very 

high and that (jjp + <1)|SC ~ [9.10]- thus seems unlikely that other nonradiative pro

cesses, besides proton transfer, play a significant role in the deactivation of N*. 

7. Spectroscopic studies of well-defined synthetically prepared hypericin tau-

tomers will help to clarify the ground- and excited-state chemistry of hypericin. Falk and 

coworkers [43] have reported the synthesis of a compound, which they identify, based 

solely upon NMR measurements, as the salt of the hypericin tautomer (DT). This mol

ecule was selected as a target for organic synthesis on the basis of semiempirical 

calculations (MNDO) [41-44]. 

The molecule synthesized by Falk and coworkers has an absorption spectrum 

that is structured and very similarto that of the normal form of hypericin, except that it is 

slightly blue shifted. Consequently, it bears a mirror image relationship to the fluores

cence spectrum of hypericin. This observation is consistent with our argumentin point 

1 above that partially tautomerized hypericin exists in the ground state. It is also an 

indication that in the case of hypericin it is not reasonable to require the absence of 

mirror symmetry between the aborption spectrum of the normal species and the emis

sion spectrum of its fluorescent tautomer. 

Falk and coworkers also indicate that upon prolonged heating their compound 

reforms the normal species but that irradiation (of an unspecified duration or intensity 

at an unspecified temperature) is insufficient to convert the normal form to the DT tau

tomer or vice versa [47]. They argue that the absence of interconvertability in the 

presence of light precludes an excited-state proton transfer mechanism. Although this 

conclusion is possible, it is certainly not unique because it assumes that the excited-

state potential surface is the same as, or at least very similar to, that of the ground state 
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and because it ignores tlie muitidimensionality of tliese potential surfaces—^that is, the 

energy nnust strictly speaking be considered in terms of at least 157 normal coordinates 

(assuming the solvent coordinates may be neglected). 

Figure 13 is presented in order to respond to the conclusions of Falk and cowork

ers. It presents crude approximations of the ground- and excited-state surfaces for 

hypericin based upon our current knowledge of the system that is summarized largely 

in Figure 12. In the ground state MT lies only slightly in energy above N and is sepa

rated from N by a modest barrier On the other hand, because no long lived fluores

cence from hypericin appears instantaneously, DT lies much higher in energy than 

either MT or N and (based on the work of Falk and coworkers) is also separated from 

MT by a substantial barrier. The ~1-2-ps lifetime of N* leads us to consider a barrierless 

transition converting N* into MT*. Preliminary temperature-dependent measurements 

in ethylene glycol [37] indicate that there is a small barrier (~1.5 kcal/mol) between MT* 

and DT*. Depending on the location of the minimum of the DT* potential well with 

respect to the barrier separating MT and DT, initially prepared N* will mostly return to 

MT and ultimately to N. 

Figure 13 is also capable of explaining the mirror symmetry in the hypericin 

absorption and emission spectra. The position of the potential well of DT* affords 

"cross-well" transitions (both in absorption and emission) between DT* and MT. A 

similar cross-well transition has been invoked by Barbara and coworkers to interpret the 

fluorescence spectra of 1-(acylamino)anthraquinones [34]. 

Finally, it is an open question whether light absorption by the hypericin tautomer, 

DT, would access the same region of the excited-state potential surface that is probed 

by exciting the nomrial form of hypericin, N, and thus allowing it to evolve on this sur

face. In other words, the fate of N* is determined by the curvature of the potential 
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Figure 13. Ground- and excited-state energy surfaces of fiypericin. See the Discus
sion. The values given are for methanol. The likelihood of a "cross-well" transition 
connecting DT* to MT depends on the coupling of the vibrational levels in the MT* and 
DT* wells. This kind of cross-well transition has been invoked by Barbara and cowork
ers in their work with anthraquinones [34]. Cross-well transitions have been investi
gated in detail by Somorjai and Hornig [46]. 
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energy surface on which it finds itself upon optical excitation, and this in turn is deter

mined by Franck-Condon factors. A priori, there is no reason to assume that the normal 

form of hypericin, N, will execute a trajectory in which it finishes as DT The same is 

true for the hypericin tautomet; DT. 

8. All the results obtained in our laboratory—and elsewhere-support the exist

ence of excited-state tautomerism in hypericin or at least are consistent with it. We 

have exploited every method currently available to us to verify that excited-state 

tautomerization occurs in hypericin. The strength of our argument rests on the absorp

tion and emission spectra of the methylated and the deshydroxy hypericins in aprotic 

and protic solvents taken in conjunction with the transient spectroscopy of hypericin 

itself. It must be noted, however, that the only indisputable and direct proof for an 

excited-state proton transfer reaction is the demonstration of the bleaching of the car-

bonyl stretching frequency as a function of time subsequent to laser excitation. Such 

measurements require a tunable infrared probe pulse coupled to a visible or ultraviolet 

pump pulse. Only recently has this type of measurement been performed on mol

ecules generally believed to execute excited-state proton transfer [24]. We are cur

rently preparing an experiment with a picosecond, tunable infrared probe pulse. 

Conclusions 

The deshydroxy hypericin analog, mesonaphthobianthrone, and 

hexamethylhypericin have proved useful in elucidating the ground- and excited-state 

kinetics of hypericin. In aprotic solvents such as DMSO, mesonaphthobianthrone is 

nonfluorescent and exhibits no absorbance in the visible region of the spectrum. In a 

strong acid such as H2SO4, however, the absorbance and fluorescence spectra of 
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mesonaphthobianthrone closely resemble those of hypericin in aprotic solvents. Simi

larly, only in sulfuric acid do the absorption and emission spectra of hexamethylhypericin 

resemble those of hypericin. These results are most easily explained by requiring the 

fluorescent states of both mesonaphthobianthrone and hypericin to bear protonated 

carbonyl groups. These results do not indicate what the protonation dynamics are in 

either the ground or the excited states. Nor do they explain why protonation of the 

carbonyls so drastically alters the optical spectra. 

The presence of two carbonyl groups in the analogs and in hypericin naturally 

leads to speculation conceming the extent of their protonation in the ground and ex

cited states. Steady-state and time-resolved fluorescence measurements of meso

naphthobianthrone in H2S04/Me0H mixtures proved to be especially useful in investi

gating solute heterogeneity. The fluorescence spectra in mixed solvents are strongly 

dependent on the excitation wavelength. Also in the solvent mixtures two lifetime com

ponents, ~2 and -15 ns, are observed. The shorter component is attributed to a singly 

protonated carbonyl; the longer component, to a doubly protonated carbonyl. In mixed 

solvents, both states of protonation are proposed to exist in the ground state because 

no rise times are detected in the time-resolved fluorescence. In pure H2SO4 the dou

bly protonated species is believed to be predominant because the fluorescence lifetime 

is 15 ns across the emission spectrum. 

Evidence for both ground- and excited-state heterogeneity and for excited-state 

tautomerization in hypericin comes from transient absorption measurements—and, in 

particular, the kinetics of stimulated emission from the excited states of hypericin. The 

finite rise time observed for the appearance of the stimulated emission indicates that a 

fluorescent species is being created in the excited state. From the titrations of meso

naphthobianthrone, we have inferred that the fluorescent species is protonated at the 
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carbonyl groups. The aigin of the slowly rising stimulated emission component (6-12 

ps in the solvents considered here) is attributed to the species that produces a new 

transient absorption immediately upon excitation (Figure 8a) and which is detected 

either directly through the decay of its absorption or indirectly through the finite bleach

ing time of the ground state (Figure 9). We have suggested that the species producing 

this absorbance transient is a monotautomer of hypericin that already exists in the 

ground state in equilibrium with the untautomerized or normal form of hypericin (Figure 

12). We propose that the normal form of hypericin is revealed in the component of 

stimulated emission that appears instantaneously and decays in 1-2 ps (Figures 10 

and 11f). Such a rapid decay time of the hypericin species with unprotonated carbonyls 

is consistent with the absence of fluorescence in mesonaphthobianthrone in aprotic 

solvents (Figure 3). Given the demonstrated heterogeneity of hypericin even in pure 

solvents (Figures 10 and 11f), the observation of single exponential fluorescence decay 

(Table I) is interpeted in terms of the existence of onlv one species that is long lived 

enough to produce measurable excited state emission (as detected either by steady-

state or traditional photon-counting methods). This fluorescent species is attributed, 

as discussed above, to a doubly tautomerized hypericin molecule. These conclusions 

have important implications for the photoinduced biological activity of hypericin and 

hypericin-like molecules. 

The photophysics of hypericin are complicated, and much study is required be

fore the role of light for its antiviral activity and photoreceptor roles is understood. Our 

results suggest that the primary photoprocess of hypericin is rapid, excited-state proton 

transfer. Because of the demonstrated antiviral [2-5] and photophobic and phototactic 

[6] roles played by hypericin and hypericin-like chromophores, elucidating their 

nonradiative pathways has enormous practical benefits. In addition, this work indicates 
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that hypericin provides an interesting model system with which to study the fundamen

tal aspects of excited-state proton transfer reactions. The influence of the solvent on 

the rate of proton transfer will be discussed in detail elsewhere. 
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vent will show they are lower in energy than suggested [41-43]. 

45. Keirstead, W. P.; Wilson, K. R.; Hynes, J. T. J. Chem. Phys. 1991, 95, 

5256-5267 Molecular dynamics of a model S^l reaction in water 
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46. Somorjai, R. L.; Hornig, D. F. J. Chem. Phys. 1962,36,1980-1987 Double 

minimum potentials in hydrogen-bonded solids. 

47. Falk and coworkers state that the compound they identify as the hypericin 

tautomer requires heating at 80°C for two days in DMSO in order to con

vert it in its ground state into the normal hypericin species [43]. If there is 

a substantial barrier between DT* and MT* in the excited-state, it is not 

clear that in the absence of heating optical excitation will effect the back 

reaction. 
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CHAPTER 4. THE ROLE OF SOLVENT IN EXCITED-STATE PROTON 

TRANSFER IN HYPERICIN 

A paper published In the Journal of Physical Chemistry^ 

F. Gai^, M. J. Fehr^, and J. W. Petrich^^ 

Abstract 

The excited-state proton transfer of hypericin is monitored by the rise time (-6-

12 ps in the solvents investigated) of the component of stimulated emission corresponding 

to the formation of the long-lived (~5 ns) fluorescent tautomer. The assignment of this 

excited-state process to proton transfer has been verified by noting that a hypericin 

analog (mesonaphthobianthrone) lacking nonlabile protons is not fluorescent unless its 

carbonyl groups are protonated. Recent experimental studies on other systems have 

suggested that three solvent properties play important roles in excited-state proton trans

fer: viscosity, hydrogen-bonding character, and dynamic solvation. We find that for 

hypericin in a range of protic, aprotic, hydrogen-bonding, and nonhydrogen-bonding 

solvents in which the viscosity changes by a factor of 60 and the average solvation time 

^ Reprinted with permission from Journal of Physical Chemistry\994, 98, 8352. Copy
right © 1994 American Chemical Society. 
2 Graduate students and Associate Professor, Department of Chemistry, Iowa State 
University. Synthesis, steady-state measurements, and CCD measurements performed 
by M. J. Fehr. 
3 To whom correspondence should be addressed. 
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changes by a factor of 100, the excited-state proton transfer rate of hypericin is 

uncorrelated with these properties and varies not more than a factor of two (-6-12 ps) 

at room temperature. The relative contribution of the bulk solvent polarity is considered 

and the role of intramolecular vibrations of hypericin on the proton transfer rate is dis

cussed. 

Hypericin (Figure 1) is a naturally occurring polycyclic quinone that has received 

recent notoriety for its antiviral capacity—in particular its ability to deactivate the hu

man immunodeficiency virus (HIV) [1]. The antiviral activity of hypericin requires light 

[2]. Hypericin is also very closely related, both structurally and spectrally, to the chro 

Introduction 

Hs ,H 

HO" 
HO 

a) hypericin b) mesonaphthobianthrone 

Figure 1. Structures of a) hypericin and b) mesonaphthobianthrone. 
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mophore of the photoreceptor complexes of the protozoan ciliates, Stentor coerulus [3] 

and Blepharisma japonicum [4]. The hypericin-like chromophore is responsible for the 

photophobic and phototactic responses of the microorganism [3,4]. Optical excitation 

of hypericin produces both singlet oxygen [5] and a pH decrease [6]. 

Figure 2 gives the steady-state absorption and fluorescence spectra of hypericin 

in octanol. The spectra of hypericin are very similar in all solvents in which it is soluble 

with the exception of shifts in absorbance and emission maxima. In previous work we 

have shown that in hypericin the ground state, and consequently the excited state, is 

inhomogeneous. Figure 3 presents a kinetic scheme based upon our current knowl

edge of the hypericin photophysics, which is discussed in detail elsewhere [7,8]. The 

salient observations consistent with this scheme are the following: 

1. Immediately upon optical excitation a transient species is produced whose 

absorption lies between 620 and 650 nm, depending upon the solvent. In methanol 

measurement of the decay of this absorbance or of the rise time for the bleaching of the 

ground-state absorption, which overlaps the spectrum of the newly formed excited state, 

yields a lifetime of -5-6 ps. 

2. The hypericin analog with no hydroxyl groups and hence no intramolecular 

proton source, mesonaphthobianthrone, provides no absorption or emission in the vis

ible region of the spectrum in aprotic solvents such as DMSO, unlike hypericin. In 

concentrated sulfuric acid, however, the absorption and emission spectra of the analog 

are very similar to those of hypericin. We thus interpreted these data in terms of the 

necessity of protonated carbonyl groups for the production of fluorescence at wave

lengths longer than 580 nm. This result indicates that in the ground state, at least one 

of the carbonyls of hypericin is protonated. This result also suggests the likelihood of 

excited-state tautomerization in hypericin. 
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Figure 2. Normalized fluorescence spectrum ( ) and absorption spectrum ( ) of 
hypericin in octanol. The steady-state emission spectrum bears a "mirror symmetry" 
relationship to the visible portion of the absorption spectrum. We attribute this part of 
the absorption spectrum to the presence of ground-state MT (see Figure 3). The solid 
curve centered at -650 nm is the spectrum of the stimulated emission that appears 
instantaneously and decays in -12 ps (Figures 5 and 7). It is the "zero time" curve from 
Figure 4 scaled according to the relative amplitudes of the components of stimulated 
emission appearing instantaneously and with a finite rise time in the region from 640-645 
nm (Figure 7 and Table I). V\fe propose that this emission arises from untautomerized 
hypericin that exists in equilibrium with a monotautomer in the ground state. 
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Figure 3. Proposed kinetic scheme for hypericin in the ground and the excited states. 
The values quoted are for methanol. Hypericin is represented schematically: only two 
of its six hydroxyl groups are pictured. We note that the tautomeric forms of DT can 
exist with the proton being donated from the "upper right" and the "lower left" hydroxyl 
groups as well as by the "upper left" and "lower left" hydroxyl groups, as indicated in 
the Figure. The delocalization of the double bonds upon tautomerization may contrib
ute significantly to the intramolecular component of the reorganization energy. We have 
tentatively assigned the rapid decay of N* to formation of MT*. Other nonradiative path
ways such as internal conversion are also a possibility as is demonstrated by the an-
thraquinones [35]. We note, however, that both the triplet yield and the fluorescence 
quantum yield of hypericin have been reported to be very high and that Op + 0|sc ~ 1 
[5]. It thus seems unlikely that other nonradiative processes, besides proton transfer, 
play a significant role in the deactivation of N . A problem for which at present we do 
not have a completely satisfactory response is why we observe no emission from MT . 
It may be that there is not a large enough population of the species to be detected in the 
midst of all the other transients observed. This question requires further investigation. 
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3. The occurrence of excited-state tautomerization in hypericin is verified by the 

rise time of the stimulated emission signal, which measures the excited-state popula

tion. In methanol, the rise time of the stimulated emission is within experimental error 

identical to the decay of the absorption transient produced upon optical excitation. An

other confirmation of the excited-state proton transfer process is that in H2SO4 there is 

no transient with time constant > 1 ps [8]. This indicates that in the ground state the 

entire population of hypericin is already protonated and does not require an excited-

state reaction to produce the long-lived fluorescent species (Figure 4). 

We have suggested that upon light absorption hypericin undergoes excited-state 

proton transfer in ~5 ps in MeOH and ~9 ps in DMSO [7,8]. This small variation in rate 

has led us to inquire in more detail about the role of the solvent on the excited-state 

proton transfer. 

The scheme presented in Figure 3 is the simplest that is consistent with the 

experimental data [7,8]. Two species are believed to be in equilibrium in the ground 

state, N and MT: normal, or untautomerized, and monotautomerized forms of hypericin. 

Evidence for this is the appearance in the stimulated emission of an instantaneous 

component (N*) decaying with one lifetime and the appearance in transient absorption 

and bleaching measurements of another component decaying with a different lifetime 

(MT ). We propose that negligible amounts of the ditautomerized form exist in the 

ground state because in the absence of strong acid no long-lived (nanosecond dura

tion) fluorescence appears instantaneously. Measurements of the hypericin analog 

lacking hydroxyl groups, mesonaphthobianthrone, suggest that protonation of both car-

bonyl groups of hypericin is a prerequisite for long-lived fluorescence. The decay of 

MT matches the rise of DT demonstrating their kinetic relatedness. It is likely that N 

tautomerizes to form MT* and that this proton transfer step represents the component 
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Figure 4. Comparison of the rise time for the formation of excited-state transients as 
measured by the delay time required to bleach maximally the ground-state absorption 
[7,8] (Table I). This rise time is finite for hypericin in an aprotic solvent where a portion 
of the ground-state population is not tautomerized (DMSO). But in a solvent where the 
entire ground-state population is protonated (H2SO4), the rise time is instantaneous. 
The fits to the data are as follows: 

DMSO, ?i.probe = A(t) = 0.23exp(-t/9.6) -0.41; 
H2SO4, Xprobe = ®30 nm: the bleaching of the ground-state absorption is com

plete within the time resolution afforded by the system and the excited state formed is 
long-lived on the time scale of the measurement. 
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of stimulated emission appearing instantaneously and decaying rapidly. For complete

ness, we note that it may be possible that N* undergoes a two-proton transfer reaction 

that converts it directly to DT*. Song, Yamazaki, and coworkers [9] have presented 

results on hypericin from which they conclude that excited-state intramolecular proton 

transfer does not occur. All of their conclusions, however, are based on observations of 

the long-lived fluorescence that is produced from the excited state whose duration is 

only several picoseconds. While their conclusions are thus not appropriate for the 

primary photoprocesses of hypericin, they may be relevant to the tautomer, which we 

refer to as DT*. The light-induced pH drop produced by hypericin may result from the 

intermolecular deprotonation of the tautomer by the solvent. 

In this article the excited-state tautomerization of hypericin is studied in a range 

of solvents that vary greatly in their viscosity, their average solvation time, their ability to 

form hydrogen bonds with the solute, and polarity. The choice of solvents and solvent 

properties studied was detemnined by reports in the literature suggesting they play an 

important role in other proton transfer systems. Of all the solvent properties investi

gated, only polarity was well correlated with the proton transfer time. We compare 

results obtained in these model systems for excited-state proton transfer with those of 

the more complex system, hypericin, whose fascinating biochemical action and enor

mous medicinal potential have clearly been demonstrated to depend on light. 

Materials and Methods 

Hypericin was obtained from Carl Roth GmbH & Co. and used without further 

purification. The hypericin analog, mesonaphthobianthrone (Figure 1), was prepared 

as described by Koch et al. [10]. Solvents were obtained from Aldrich. Fluorescence 
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spectra were measured with a Spex Fluoromax. The time-resolved absorption (stimu

lated emission) experiments were performed with 1 -ps resolution with the apparatus 

described elsewhere [11-13]. Transient absorption spectra were obtained with a liquid 

nitrogen cooled charge-coupled device (CCD) (Princeton Instruments LN/CCD-1152UV) 

mounted on an HR320 (Instruments SA, Inc.) monochromator with a grating (1200g/ 

mm) blazed at 5000 A. The CCD pixels were binned such as to allow simultaneous 

collection of both the probe and the reference beams, 1 and Ig respectively, of the tran

sient absorption spectrometer. For the absorption and stimulated emission experiments, 

identical kinetics were observed whether the pump beam was rotated parallel, perpen

dicular, or at the magic angle (54.7°) to the probe beam. Unless otherwise indicated, 

experiments were performed at room temperature, 22°C. Measuring excited-state ki

netics by the increase in probe transmission owing to stimulated emission is a well 

known technique. See references 23 for an example of its application to a system 

executing excited-state proton transfer, 3-hydroxyflavone. Temperature dependent 

measurements were performed with an Air Products system. A helium expander mod

ule (DE-202) is connected to a water-cooled compressor (HC-2) for helium exchange. 

The cryostat is evacuated by a Welch Duo Seal mechanical pump. 

In all cases the pump-probe data include a contribution from stimulated emis

sion that grows in with a finite risetime and a contribution from stimulated emission that 

appears instantaneously. The component with the finite risetime is represented by a 

rising exponential with a positive prefactor a-| [exp(-t/i:-|) -1]. For large values of t, the 

amplitude of this term is determined by the stimulated emission corresponding to the 

long-lived—several nanoseconds—^fluorescent state that does not decay on the time 

scale of the experiment. The instantaneous component of stimulated emission is rep

resented in the data fitting analysis by an exponential with a negative prefactor, -a2. In 
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addition, long-lived absorption owing to the prescence of the solvated electron [8] may 

in some cases need to be taken into account by a constant, c. There are thus four 

possible factors to be considered in the pump-probe data: (1) stimulated emission with 

a finite rise time that arises from (2) a long-lived fluorescent state; (3) instantaneous 

components of stimulated emission; and (4) long-lived transient absorption owing to 

the presence of the solvated electron. The pump probe data are thus fit to the following 

form, which takes into account the above contributions in the order in which they have 

been discussed: 

A(t) = a 1 [exp(-t/T:i) -1] - a2 exp(-t/T2) + c. (1) 

The construction of the spectrum (Figure 2) of the species, N*, giving rise to the 

instantaneous component of stimulated emission that decays rapidly is performed as 

follows. First, the spectrum of the stimulated emission at "time zero" is obtained (Fig

ure 5). Because this spectrum is obtained at zero time, it does not include contribu

tions from the state that grows in with a finite time constant. Second, the amplitude of 

this spectrum at a given wavelength, with respect to that of the steady-state spectrum, 

is determined from the ratio of the amplitude of the component of stimulated emission 

appearing instanteously, [N*], to that of the component appearing with a finite time 

constant from [MT*] (Figures 3 and 7 and Table I). It might be objected that the shape 

of this spectrum does not accurately represent that of the transient in question because 

of the presence of other species absorbing at the probe wavelength. The only other 

transient species with significant oscillator strength in this spectral region is the sol

vated electron [8]. We note that the absorption spectra of the solvated electrons in 

methanol, ethanol, and isopropanol are all very broad and that the maximum of the 
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spectrum shifts to longer wavelength with increasing size of the alkyi chain [14]. For 

isopropanol, for example, the maximum is at -800 nm and the absorbance tails off 

slowly towards shorter wavelengths. The spectrum of the solvated electron in octanol 

would be expected to be shifted even farther to the red. We thus conclude that the 

distortion of the emission spectrum that we attribute to N* from the solvated electron is 

negligible and that if any distortion were to be expected, it would appear on the red, not 

the blue, edge of the spectrum. 

Results 

Figure 5 presents the negative-going transient absorbance signal of hypericin in 

octanol. This signal is attributed to stimulated emission from excited-state hypericin 

because it is observed in a region where there is no ground-state absorbance. The 

signal thus cannot be assigned to ground-state bleaching. The salient feature of the 

Figure is that a finite time is required for the stimulated emission to be fully developed. 

We have thus used the rise time of stimulated emission as a measure of the time 

required to produce the long-lived excited-state species. We have argued [8] that mea

surable fluorescence (by steady-state or conventional photon counting techniques) in 

hypericin is obtained only from the species with both carbonyl groups protonated. 

In all the solvents in which we have investigated hypericin, except strong acids 

such as sulfuric and triflic acid where it is expected to have both carbonyl groups proto

nated, we observe a finite "rise time" for the around-state bleaching. Such a phenom

enon is most easily rationalized by the presence of an excited-state species, produced 

within the excitation pulse, that has oscillator strength in the same region as the ground-

state molecules. We have directly observed such an excited-state species in transient 
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Figure 5. Time evolution of stimulated emission of hypericin in octanol. 
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absorption measurements [7,8]. As indicated by the summary presented in Table I, the 

agreement between the lifetime of this excited state and the rise time of the "slow" 

component of the stimulated emission is excellent. We have discovered that measure

ment of the rise time for ground-state bleaching provides a more accurate determina

tion of the lifetime of the short-lived excited state that is a precursor, MT*, to the long-lived 

fluorescent species of hypericin, DT*. Measurement of the decay of the transient ab-

sorbance of MT* can be obfuscated by the presence of absorption from the biphotonically 

produced solvated electron [8] as well as from stimulated emission—or transient ab

sorption from the species producing the stimulated emission. 

Figures 6 and 7 also indicate that upon optical excitation a species is created 

that produces stimulated emission immediately and that subsequently decays. This 

prompt stimulated emission is consistent with the suggestion made above (and in the 

caption to Figure 3) that at least two ground-state species are optically excited. Figure 

6 and Table I suggest that the solvent seems to affect the ground-state equilibrium 

between N and MT, which is subsequently manifested in the ratio of the components of 

stimulated emission appearing with an instantaneous or a finite rise time, Ip/ls- The 

component of the stimulated emission that appears instantaneously is not attributable 

to vibrational relaxation because its decay is the same whether the excitation is at 294 

or 588 nm. Furthermore, it does not arise from dynamic solvation of the excited state 

[15] because it decays equally rapidly in acetonitrile and ethylene glycol, whose aver

age solvation times differ by a factor of 100 (Table I, Figure 6). We suggest that the 

rapid decay of N* represents a tautomerization step to MT*. This is discussed in more 

detail elsewhere [8]. 

Figure 7 demonstrates the variation in the stimulated emission kinetics of hypericin 

in octanol as a function of probe wavelength. Tuning the probe from 640 to 675 nm 



www.manaraa.com

128 

Table I. Dependence of Proton Transfer Times in Hypericin in Selected Solvents® 

Solvent Tl(cP)'' <TS>= ET(30) decay rise lp/ls'.9 

(ps) [33] time^' time®'* 

(ps) (ps) 

MeCN 0.37 0.9 45.6 10.8 11.6 1.0 

(600 nm) (645 nm) (645 nm) 

BuCN 0.57 3.6 43.1 11.7 10.4 1.2 

(600 nm) (645 nm) (645 nm) 

CCI4/ 12.8 

BuCN'^ (645 nm) 

MeOH 0.57 3.3, 55.4 6.4 6.7 0.84 

6.2 (600 nm) (645 nm) (645 nm) 

DMSO 1.99' 3.1, 45.1 9.6 9.2 0.43 

1.2 (610 nm) (658 nm) (658 nm) 

BuOH 2.75 61 50.2 75 11.0 0.75 

(600 nm) (645 nm) (645 nm) 

OcOH 736' 48.3 10.3 12.6 0.49 (640 nm) 

(610 nm) (645 nm) 0.51 (645 nm) 

EgOH 18.25 100 56.3 5.8 6.4 1.2 (645 nm) 

(600 nm) (645 nm) 0.99 (650 nm) 

® All experiments were perfoimed at room temperature, 22°C. 
" Except where otherwise noted, the solvent viscosity at 22°C [32]. 
•= Average solvation time as determined from measurements of time-resolved Stokes shifts. The 

cited solvation times are obtained from the tablulation in reference 15. 
" Decay of the excited-state absorption as measured by the rise time for the ground-state bleaching 

of hypericin. The absence of a value indicates that the measurement was not performed. 
® "Long" component of the rise time of stimulated emission, which is attributed to the intramo

lecular proton transfer in hypericin. 
'The value in parentheses is the probe wavelength. 
9 Ratio of the component of stimulated emission appearing instantaneously, Ip, to that appearing 

with a finite rise time, Ig. The dependence of this ratio on solvent can be interpreted in terms of a ground-
state equilibrium between N and MT (Figure 3) insofar as the emission spectra of N* and MT* do not 
change greatly with respect to solvent at the probe wavelength. 

' Viscosity at 25°C [34]. 
The ratio of solvents in the mixture is 1/4 and is based on volume. This corresponds to a 

solution of 0.18 mole fraction in CCI4. The viscosity of the mixture was not determined. 
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Figure 6. Time-resolved stimulated emission profiles of hypericin in (from top to bot
tom) methanol, DMSO, and ethylene glycol, and acetonitrile. = 588 nm. See Table 
I for further details. 

methanol: A(t) = 0.1 7[exp(-t/6.7 ps) -1] - 0.14exp(-t/1.9 ps); 
DMSO: A(t) = 0.30[e xp(-t/9.2 ps) -1] - 0.13exp(-t/1.9 ps); 
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Figure 6 (cont.) 
ethylene glycol: A(t) = 0.45[e xp(-t/6.4 ps) -1] - 0.53exp(-t/2.4 ps) + 0.26; 
acetonltiile: A(t) = 0.1 9[exp(-t/11.2 ps) -1] - 0.19exp(-t/1.4 ps) + 0.025. 
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reveals smoothly varying contributions of the components of stimulated emission that 

appear instantaneously and that appear with a finite rise time. The instantaneous 

component is most easily identified at 640 and 675 nm. The simplest interpretation of 

these data is that the normal form of hypericin, N*, which we suggest gives rise to the 

instantaneous component has a fluorescence spectrum that in some regions is more 

intense than that of the fully tautomerized form, DT*. The solid curve centered at -650 

nm in Figure 2 represents the fluorescence spectrum of N* obtained from the ratio of 

the instantaneous to the rising components (Table I). 

Measurements of the slower component of the stimulated emission in ethylene 

glycol over a rather limited temperature range were used to construct an Arrhenius plot 

(Figure 8). The barrier for this proton transfer reaction is thus estimated to be 1.5 kcal/ 

mol in ethylene glycol. Lastly, Figure 9 presents a plot of the time constant for the 

slower component against solvent polarity as measured by E-j-(30). 

Discussion 

In a range of solvents, both hydrogen bonding and nonhydrogen bonding and 

protic and aprotic, over which the viscosity and the average solvation time change by 

factors of 60 and 100, respectively, the proton transfer time as measured by the rise 

time of the longer-lived component of the stimulated emission is found to be uncorrelated 

with these properties and to change by at most a factor of two. This result is very 

surprising when it is considered in the context of other examples of excited-state proton 

transfer. 

Hochstrasser and coworkers [16] have observed proton transfer rates for a 2-

phenyi-benzotriazole bearing an octyl group on the 5-position that agree very well with 
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Figure 7. Stimulated emission profiles of hypericin in octanol at different probe wave
lengths, A,ex = 588 nm. Probe wavelengths are indicated in the panels. 

Xprobe = ®40 nm: A(t) = 0.086[e xp(-t/11.0 ps) -1] -0.042exp(-t/13.4 ps); 
Xprobe = = 0-47[e xp(-t/12.6 ps) -1] - 0.24exp(-t/18.8 ps); 
A,probe = = 0.097[e xp(-t/76 ps) -1] - 0.054exp(-t/11.0 ps); 
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Figure 7 (cont.) 
?iprobe = A(t) = -0.1 2; 
^probe = = -0.067e xp(-t/16.0 ps) - 0.022. 
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the longitudinal relaxation time of the solvent, T|_. These data are particularly intriguing 

because despite this dependence on xi_ no time-dependent Stokes shift is observed in 

this system. 

The time-dependent Stokes shift is related to X|_ and is characterized by an 

average solvation time <ts> [15,17]. When a solute is promoted to its excited state, its 

charge distribution is altered. The solvent is no longer in equilibrium and must relax to 

its new equilibrium structure, thus affording the temporally evolving Stokes shift. Charge 

transfer reactions similarly alter the charge distribution of the solute, and in many cases 

the rates of such reactions have been shown to depend on the dynamic response of the 

solvent, characterized by T|_ or <xq>, to the charge-transferred species [16,17]. 

In hydrogen-bonding solvents such as alcohols, on the other hand, the ability of 

the solvent to weaken or to break the intramolecular hydrogen bond in 3-hydroxyflavone 

is the rate determining factor in the excited-state proton transfer reaction [18-23]. If 

both the carbonyl and the alcohol groups of 3-hydroxyflavone are strongly coordinated 

to different solvent molecules, proton transfer occurs relatively slowly, on a time scale of 

1 0 ps [23]. If, however, the intramolecular hydrogen bond of the solute is not per

turbed (as occurs in hydrocarbon solvents such as methylcyclohexane) excited-state 

proton transfer is very rapid. Harris and coworkers have measured this time to be -240 

fs [23]. These workers have also proposed that if a single alcoholic solvent molecule 

can form a cyclic hydrogen-bonding interaction with the carbonyl and the alcohol groups 

of the solute, an even more rapid transfer time of -80 fs results. Similarly rapid proton 

transfer times have been observed in benzothiazoie derivatives [24,25]. These results 

have been interpreted in terms of the wavepacket prepared upon optical excitation. 

The evolution of this wavepacket towards the tautomeric form on the excited-state po

tential surface will initially depend very strongly on the vibrations displaced upon light 
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Figure 8. Arrhenius plot of the time constant of the longer-lived component of stimu
lated emission in hypericin in ethylene glycol. 
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Figure 9. The time constant of the longer-lived component of stimulated emission in 
hypericin plotted as a function of polarity as measured by Ej(30) [33]; 1, diethylene 
glycol dimethyl ether; 2, butyronitrile; 3, DMSO; 4, acetonitrile; 5, 1-octanol; 6, 1-bu-
tanol; 7, methanol; 8, ethylene glycol; 9, 2,2,2-trifluoroethanol. 
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absorption [23,24]. 

The proton transfer time in hypericin ranges from about 6 to 12 ps in the solvents 

we have investigated and hence is similar to the proton transfer time observed in 3-

hydroxyflavone and attributed to solute-solvent structures in which two different alcohol 

molecules are coordinated to the carbonyl and alcohol groups of the solute [23]. Such 

a state of solvation cannot, however, explain the proton transfer rates in hypericin be

cause the same results are obtained in both hydrogen-bonding and nonhydrogen-bond-

ing solvents. This suggests that the intramolecular interactions between the O—H*"0 

group formed by the alcohol oxygen, the proton, and the carbonyl oxygen of hypericin 

are much stronger than any potential hydrogen bonding interactions with the solvent. 

The assignment of the excited-state process to intramolecular proton transfer 

may be criticized because we do not observe an isotope effect [8]. There is precedent 

for proton transfer processes that do not exhibit an isotope effect [23,25]. Whether an 

isotope effect is observed will also depend on such factors as the degree to which the 

reaction is nonadiabatic and characterized by tunneling through a potential barrier [26] 

or if the reaction occurs by means of a barrierless (or small barrier) process in which 

the role of vibrational motions other than the 0-H stretch are important [27]. 

Hynes, Borgis, and coworkers [26] have presented a theory of proton transfer in 

both adiabatic and nonadiabatic limits. Three coordinates play an important role; the 

coordinate for the proton itself; the intramolecular separation of the two atoms (in this 

case oxygens) between which the proton is transferred; and a collective solvent coordi

nate. In this treatment, the electrons are always treated adiabatically; but the proton 

transfer process is considered to be in a nonadiabatic or an adiabatic limit depending 

on the separation of the oxygen atoms. For a large (> 2.7 A) separation, the wavefunction 

for the proton is localized about one of the oxygens and a sufficiently large barrier exists 
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that proton transfer must be viewed as a nonadiabatic tunneling process. (Tfie rate of 

this tunneling process is modulated by the oxygen-oxygen separation and the solvent 

fluctuations.) If, however, the separation is small (< 2.7 A), the barrier to proton transfer 

is greatly decreased and the extent to which tunneling contributes to the rate of proton 

transfer can be greatly reduced. Finally, in reactions that involve the generation of 

charged or partially charged species, the solvent polarity is expected to accelerate the 

rate. For example, in a reaction taking covalent reactants to ionic products, the prod

ucts will be better solvated by a polar substance such as water than a nonpolar sub

stance such a methylcyclohexane. Stabilization of the potential surface for the ionic 

species with respect to that for the covalent species will lower the point at which they 

cross and hence decrease the activation energy for the process [28]. 

In the case of hypericin, the distances [29,30] between the keto and hydroxy 

oxygens (as measured starting from the 1 and 14 positions and moving clockwise around 

the polycycle in Figure 1) between which the proton is transferred are all consistent with 

an adiabatic process: 2.45, 2.53, 2.49, and 2.53 A. The solvent dependence of the 

time constant for the excited-state process is also consistent with its assignment to 

proton transfer. The time constant decreases with increasing solvent polarity, as mea

sured by Ej(30), and suggests a process that involves the transfer of a charged par

ticle, molecular rearrangement, and charge reorganization [26,28]. Finally, 

temperature-dependent measurements in ethylene glycol (Figure 8) indicate that there 

is a small barrier (~1.5 kcal/mol) between MT* and DT*. This small barrier is in agree

ment with the short distances between oxygens in hypericin. 

Construction of molecular models of hypericin and a recent x-ray structure [29] 

indicate that the aromatic polycycle is twisted. One might argue that the excited-state 

transients observed reflect transitions from one form of conformational isomer to an
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other. Because such a process involves a large amplitude motion, it would be expected 

to be viscosity dependent. In solvents in which the viscosity changes by a factor of 60 

we see, however, no more than a change of a factor of two in the time constant of the 

longer-lived excited-state transient (-6-12 ps). Furthermore, the rate of the excited-state 

process is completely uncorrelated to viscosity: the small variation in rate cited can be 

effected just a easily when the viscosity is increased by less than a factor of two, i.e. 

from methanol to acetonitrile (Table I). This excludes the assignment to a conforma

tional transition. 

An obvious question that remains is whether intramolecular vibrational modes 

other than those modulating the oxygen-oxygen separation play a role in the reaction. 

Resonance Raman measurements will be indispensable in providing a response. 

Peteanu and Mathies [27] have shown that in the case of 2-hydroxyacetophenone, 

which is believed to execute a barrierless excited-state proton transfer, there is no dis

placement in the 0-H stretching coordinate upon optical excitation. This result sug

gests that vibrations other than proton motion are responsible for the initial displace

ment of the wavepacket away from the Franck-Condon region of the excited state. 

Consistent with these Raman measurements are the observations of Harris and co

workers [23] and of Elsaesser and coworkers [24,25] of proton transfer rates that are 

independent of isotopic substitution. Cotton and coworkers [31] have measured the 

resonance Raman spectrum of hypericin under various conditions and observed bands 

in the region from -1620 to 620 cm""', some of which were tentatively identified. 
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Conclusions 

Measurements of the stimulated emission of hypericin with 1 -ps resolution 

have been used to monitor the creation and decay of excited and hence fluorescent 

states. The excited-state characterized by nanosecond lifetimes and observed in steady-

state measurements [8,9] appears in roughly 6 to 12 ps. The rise time for the appear

ance of this emission is attributed to an excited-state proton transfer reaction. The 

similarity of the rates in both hydrogen-bonding and nonhydrogen-bonding solvents is 

the most surprising result given what is known about the behaviour of 3-hydroxyflavone 

in these solvents. Polarity is the only solvent property that is well correlated with the 

proton transfer time. In addition to the slower, ~6-12-ps rise time, a component of the 

stimulated emission is observed that appears instantaneously. This component is at

tributed to a ground-state untautomerized (normal, N) form of hypericin that decays 

rapidly, most probably by forming the excited-state tautomer MT . The observation of 

this component demonstrates the inhomogenous distribution of hypericin structures in 

the ground state and hence in the excited state. A proton transfer reaction with a time 

constant of 6-12 ps is relatively slow [19-25]. Hypericin thus provides an extremely 

useful system with which to test current theories of proton transfer [26]. 

In conclusion, the primary photoprocess occurring in hypericin is intramolecular 

proton transfer, whose rate depends on solvent polarity. Understanding the light in

duced activity in hypericin is of significance for appreciating its biochemical role in 

protozoa and exploiting its medicinal activity against viruses. 
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CHAPTER 5. THE ROLE OF OXYGEN IN THE PHOTOINDUCED ANTIVIRAL 

ACTIVITY OF HYPERICIN 

A paper published in Bioorganic Medicinal Chemistry Letters^ 

IVl. J. Fehr^, S. L. Carpentei^'^, and J. W. Petricli^'^ 

Abstract 

Hypericin displays photoinduced antiviral activity. We examine the photoinduced antivi

ral activity of hypericin under both oxygenated and hypoxic conditions and observe that 

hypericin is equally toxic under both conditions. These results indicate that while sin

glet oxygen may play a role in the antiviral activity of hypericin, it does not play a major 

role. 

Introduction 

The naturally occurring polycyclic quinone, hypericin (Figure 1), possesses im

portant and diverse types of biological activity [1]. It has been shown that hypericin 

^ Reprinted with permission from Bioorganic Medicinal Chemistry Lexers 1994, 4,1339. 
Copyright © 1994 American Chemical Society. 
2 Graduate student. Assistant Professor, and Associate Professor, Department of Chem
istry and Department of Microbiology, Immunology, and Preventive Medicine, Iowa State 
University. 
^ To whom correspondence should be addressed. 
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inactivates the hunnan innmunodeficiency virus (HIV)[2-6]. That antiviral activity re

quires lightwas first demonstrated in a lentivirus closely related to HIV, equine infec

tious anemia virus (EIAV), by Carpenter and Kraus [6]. Hypericin produces singlet 

oxygen very efficiently (with a quantum yield of 0.737), and many studies have sug

gested that its antiviral activity is due to the production of singlet oxygen [2-6]. 

H- H 

a) 

Figure 1. Structures of hypericin (a) and the two possibilities for the chromophore of 

Stentor coerulus (b and c) [16]. 

The excited-state reactivity of hypericin, however, extends well beyond the pho-

tosensitization of oxygen to form singlet oxygen. Redepenning and Tao have mea

sured the formal potential of hypericin in DMSO by cyclic voltammetry and concluded 

that in its excited state it is both a good oxidizing and reducing agent [8]. Diwu and 

Lown observed both singlet oxygen and superoxide radical upon illumination of hypericin 

with 580- nm light under aerobic conditions [9]. They also indirectly observed the 

formation of a semiquinone radical species in the absence of oxygen. Mazur and 

coworkers have obtained similar results [10-11]. The role of singlet oxygen in the inac-

tivation of mammalian cell activity has also recently been examined by Dahl [15]. In 
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this work, it was concluded that -10^^-10^^ singlet oxygen collisions were required to 

inactivate a cell. Elucidating the reactivity of excited-state hypericin and the subse

quent reactivity of molecules that it encounters is essential for understanding the light-

induced mechanism of antiviral activity. The mechanism of photosensitization by a 

given molecule in its excited state can be classified into two types of processes [22,24]. 

In Type I processes, the excited-state photosensitizer interacts first with the substrate, 

which may go on to react with another reagent, which is usually oxygen. In Type II 

processes, the excited-state photosensitizer interacts first with oxygen, thus producing 

singlet oxygen, which subsequently goes on to react with the substrate. 

We have questioned the relative importance of singlet oxygen in the toxicity of 

hypericin towards HIV and related viruses [12-14]. For example, hypericin is closely 

related, both structurally and spectrally, to the photoreceptor of the protozoan ciliates, 

Stentor coerulus (Figure 1) and Blepharisma japonicum [16-18]. This photoreceptor 

confers upon the organism its biologically necessary photophobic and phototactic re

sponses. Under conditions of ambient light the stentorin chromophore and hypericin 

are nontoxic to the organism. On the other hand, the singlet oxygen produced from 

these chromophores is toxic to S. coerulus under high light flux (-5000 VJ/nf) [19]. It is 

an open question, therefore, whether the limited exposure to room light in the experi

ments of Carpenter and Kraus and of other workers is toxic to EIAV HIV, and other 

retroviruses because of photosensitized generation of singlet oxygen by hypericin or 

because of the presence of additional nonradiative decay processes of the excited 

states of hypericin [2-6]. We have provided the first detailed investigation that uses 

both -1-ps time resolution and a white-light continuum to examine and to unravel the 

excited-state primary photoprocesses of hypericin and have suggested that the ex-

cited-state transients we observe, coupled with data from model compounds, can be 
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interpreted in terms of tautomerization [12-14]. Tlie results and conclusions of these 

time-resolved studies are of particular interest in the context of earlier observations and 

suggestions of Song and coworkers that the excited states of hypericin-like chromophores 

produce protons upon photoexcitation [18-21]. We thus proposed that deprotonation of 

the tautomer results in the reported pH decrease. Whether such processes are in fact 

responsible for the antiviral activity of hypericin is as yet uncertain, but it is clear that a 

detailed investigation of the excited-state chemistry of hypericin is required in order to 

unravel the mechanism of antiviral activity In order to determine the relative impor

tance of oxygen for the antiviral activity of hypericin, we have performed experiments 

where EIAV was challenged with hypericin and light under hypoxic conditions. 

Experimental 

Titration of infectious virus: All experimental manipulations were done in sub

dued light. Cell-free stocks of the MA-1 isolate of EIAV containing approximately 10® 

focus-forming units/ml (FFU/ml) of EIAV, were diluted 1:10 in Hank's buffered saline 

solution (HBSS) [26-27]. Hypericin (Carl Roth GmbH & Co.) was added to a final 

concentration of 10 pg/ml. 

Illumination and deoxygenation: Deoxygenation of samples by bubbling either 

Nj or Ar was done in light-tight containers. Hypericin/EIAV samples were exposed to 

light from a 300 W projector bulb fitted with a cut-off filter blocking wavelengths shorter 

than 575 nm. The irradiance at the sample was estimated to be 170 W/m^ in the 

spectral range in which hypericin absorbs, 575-600 nm. Alternatively, deoxygenation 

was effected by using R-carotene (Sigma) as a singlet oxygen scavenger (Table 2) [22, 

25]. In neither case was oxygen seen to be required for antiviral activity. Solutions of R-
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carotene were made up in a Hank's medium/ethanol mixture (95/5 v/v). Samples of 

EIAV, hypericin, and varying aliquots of the B-carotene mixture were irradiated at 598 

nm (24-nm bandpass, -100 W/m^) for 20 min. with a Photon Technology International 

150-W lamp (LPS-220) coupled to a monochromaton 

Oxygen assays: Deoxygenation efficiency was evaluated by two separate tech

niques. A dissolved oxygen test kit (Hach, 0X-2P) showed dissolved oxygen levels 

after one hour of deoxygenating to have fallen from an initial concentration of 5 mg/L 

(1.56 X 10"^ M) to below the detection limit of 0.2 mg/L (6.25 x 10 ® M). An alternate 

method of testing for dissolved oxygen is via the bioluminescence of the firefly luciferase/ 

luciferin reaction. Oxygen is necessary in this system for the production of light [23]. 

Light output was measured with a liquid-nitrogen cooled charge-coupled device (CCD) 

(Princeton Instruments LN/CCD-1152UV) mounted on an HR320 (Instruments SA, Inc.) 

monochromator with a grating (1200g/mm) blazed at 5000 A. A solution of 1.0 x 10"® M 

luciferin and 1.6 x 10 ® M luciferase and a solution of 1.0 x 10" M ATP were simulta

neously deoxygenated in the same apparatus as the ElAV/hypericin experiments. The 

reaction was initiated by injecting 0.5 ml of the deoxygenated ATP solution into the 

luciferin/luciferase solution. Three successive 30-second integrations yielded spectra 

that were superimposable on the background spectra of the CCD. Light could be gen

erated from the reaction system by opening it to the atmosphere. Lack of light genera

tion was taken to indicate that oxygen levels were negligible. 

A focal immunoassay similar to that previously described was used for quantitation 

of infectious virus [6]. Results are expressed in terms of FFU/ml supernatant. 
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Results and Discussion 

Tables 1 and 2 compare the antiviral activity of hypericin under aerobic and 

hypoxic conditions. Hypericin is toxic in the presence and the absence of oxygen (al

though the data suggest that hypericin in a hypoxic environment does not inactivate 

EIAV as effectively as in an oxygenated environment.) While these results do not un

ambiguously rule out the Type II mechanism, they do demonstrate the importance of 

the Type I mechanism, particularly that direct interaction of hypericin itself with the virus 

is important for the remarkable antiviral properties of hypericin. It is of interest that 

Meruelo and coworkers report that sodium azide (NaNg), which is believed to scavenge 

singlet oxygen~as well as to quench other oxidants and sensitizer excited-states, inhib

its the light-induced activity of hypericin to inhibit reverse transcriptase activity of mu

rine Radiation leukemia virus (RadLV) [5,22,25]. This argument, however, is based 

upon the observation that this effect occurs only if NaNg is allowed to incubate 10 min. 

with the sample before the introduction of hypericin. They argue that since addition of 

NaNg subsequent to a 30-min. incubation with hypericin and exposure to light has little 

effect on the toxicity that singlet oxygen is responsible for the antiviral activity. An 

alternative interpretation of the former result is that preincubation of NaNg facilitates 

quenching of the excited state of hypericin and consequently inactivates antiviral activ

ity, which is not necessarily based upon singlet oxygen. 

The antiviral mechanism and the target of hypericin activity are as yet unclear 

Meruelo and coworkers have observed that in the presence of light hypericin induces 

significant changes in the HIV capsid protein, p24, and the p24-containing gag precur

sor, p55, as indicated by Western blot analysis [3,4]. They have also observed that 

recombinant p24 in the presence of light forms an anti-p24 immunoreactive material of 
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a molecular weight of 48 kilodaltons. They have consequently suggested that cross-

linking and other alterations of p24 occur and that such alterations may inhibit the 

release of reverse transcriptase activity. It is significant that these workers found that 

under ambient lighting conditions, hypericin did not inhibit the binding of gp120 to CD4 

cells and that it did not inhibit the formation of syncytia (large, abnormal multinucleated 

cells formed by the fusion of infected cells with uninfected CD4 cells) [3,4]. On the 

other hand, inhibition of gp120 binding was observed under conditions of more intense 

illumination: i.e., when samples were placed -10 cm away from a fluorescent light 

source for 30 minutes [3]. The highest concentration of hypericin used by Meruelo and 

coworkers is 2 pg/ml (~4 pM). Lenard et al., on the other hand, observed that syncytia 

formation was inhibited by illumination for 1 hour in the presence of 1 pM hypericin [4]. 

Because of the similarity in behavior between hypericin and the photosensitizer, rose 

Table 1. Effect of Oxygen on the Antiviral Activity of Hypericin 

Illumination time (min)® Infectious virus (FFU/ml) 

oxygenated'' hypoxic^ 

0 10,200 14,500 (Ng) 

10 0 25 (Nj) 

0 2,475 5,975 (Ar) 

10 0 225 (Ar) 

® Illumination was effected with a 300 W projector bulb fitted with a cut-off filter 
blocking wavelengths shorter than 575 nm. 

" The oxygen content of the sample was determined by letting it equilibrate with 
the atmosphere. 

= Hypoxic conditions were obtained by passing argon or nitrogen gas over the 
samples for 1 hour before and during illumination. 
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bengal, Lenard et al. concluded that singlet oxygen was the essential factor in toxicity, 

even though hypericin proved itself to be much more toxic. These workers quoted an 

irradiance of 800-900 footcandles, which is 12-14 W/m^ at 555 nm. This latter figure is 

an underestimate of the energy that is actually available to be absorbed by hypericin 

since footcandles are a measure of visible light, whose detectability by eye is a maxi

mum at -555 nm. In other words, the figure that is quoted gives no information on the 

Table 2. Effect of a Singlet Oxygen Scavenger on the Antiviral Activity of Hypericin 

[B-carotene] (|JM) Infectious virus Infectious virus 

with hypericin (FFU/ml) without hypericin (FFU/ml) ^ 

80 0 3,000 

64 0 4,800 

48 0 6,400 

32 0 8,400 

16 0 > 10,000 

0 0 10,000 

® Control experiments. 

irradiance over the spectral range utilizable by hypericin (and transparent to glass) from 

about 300 to 600 nm [4]. If we assume that the radiant energy provided by the source 

in this example is constant over this spectral range, then the sample is actually exposed 

to an irradiance of 3700-4200 W/m^. 
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It is useful to consider our experiments in tiie context of tlie others referred to 

above. The toxicity to S. coerulus and to syncytia under high, but not ambient or low, 

light flux and the ability of hypericin to kill HIV and EIAV under conditions of low or 

ambient light flux suggest that several mechanisms of toxicity may be involved [3-5,19]. 

The relative importance of Type I and II mechanisms in virus inactivation may depend 

on the intensity of light. Under high irradiance, the formation of singlet oxygen by a 

Type II mechanism would be predominant, whereas under low irradiance the antiviral 

activity would be primarily due to a Type I reaction. Such reasoning may explain the 

differences among investigators in characterizing the antiviral mechanism of hypericin 

cited above. At high irradiance, there is both inhibition of gp120 binding and inhibition 

of cell fusion, events that depend on interactions between virus and cell membranes 

[3,4]. Interestingly, the effects are not reported to occur at low irradiance, where inhibi

tion is associated with alterations in the viral capsid protein [3]. This may indicate that 

Type II reactions target the viral membrane, whereas Type I reactions may attack other 

stages in the life cycle of the virus. This may also explain the absolute dependence on 

oxygen for the anti-tumor effect of hypericin [24]. Thomas and Pardini found that hypericin 

uptake in EMT6 mouse mammary carcinoma cells was associated with membrane 

components, both at the cell surface and in intracellular organelles [24]. Although they 

did not discuss the mechanisms of hypericin-induced cell killing, their observation of an 

absolute dependence on oxygen for the anti-tumor effect of hypericin in the presence of 

light (20-30 W/m^) suggests that toxicity is due to membrane-associated damage pro

duced by singlet oxygen. Much evidence exists that singlet oxygen is the primary mecha

nism of hypericin-mediated damage to cell membranes [1 ]. Our results indicate that 

under conditions of ambient light (low intensity), oxygen is not required for hypericin to 

exhibit antiviral activity. While it is certainly likely that singlet oxygen may play a role. 
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especially under conditions of high hypericin (and oxygen) concentrations or intense 

light fluxes, it is not essential. Much work remains in order to determine whether it is the 

singlet or triplet state of hypericin that is responsible for its antiviral activity and to 

determine the mechanism of this activity. 
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CHAPTER 6. CHEMILUMINESCENT ACTIVATION OF THE ANTIVIRAL 

ACTIVITY OF HYPERICIN: A MOLECULAR FLASHLIGHT 

A paper published in the Proceedings of the National Academy of Science^ 

S. Carpenter^'^, M. J. Fehr^, G. A. Kraus^, and J. W Petrich^^ 

Abstract 

Hypericin is a naturally occurring photosensitizer that displays potent antiviral 

activity in the presence of light. The absence of light in many regions of the body may 

preclude the use of hypericin and other photosensitizers as therapeutic compounds for 

the treatment of viral infections in vivo. The chemiluminescent oxidation of luciferin by 

the luciferase from the North American firefly, Photinus pyraiis, was found to generate 

sufficiently intense and long-lived emission to induce antiviral activity of hypericin. Light-

induced virucidal activity of hypericin was demonstrated against equine infectious ane

mia virus (EIAV), a lentivirus structurally, genetically, and antigenically related to the 

human immunodeficiency virus (HIV). The implications for exploiting chemilumines-

cence as a "molecular flashlight" for effecting photodynamic therapy against virus-

infected cells and tumor ceils are discussed. 

^ Reprinted with pemnission from the Proceedings of the National Academy of Science 
USA 1994, Copyright © 1995, National Academy of Science 
2 Assistant Professoi; Graduate student. Professor, and Associate Professor, Depart
ments of Microbiology, Immunology, and Preventive Medicine and Chemistry, Iowa State 
University. Steady-state measurements, selected assays, and calculations performed 
by M. J. Fehr. 
3 To whom correspondence should be addressed. 
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Introduction 

The need for effective antiviral therapies for treatment of human immunodefi

ciency virus (HIV) infections has acquired increasing urgency with the realization that 

there may be years before an effective vaccine is in widespread use [1]. Three com

pounds currently are approved for use in treatment of HIV-1 infections, and all target 

the viral enzyme reverse transcriptase [2]. The eventual emergence of drug-resistant 

viral variants likely contributes to the fact that the present therapies may delay, but do 

not completely block, the progression to clinical disease in HIV-1 (human immunodefi

ciency virus Type 1) infected persons. Consequently, attention currently is focused on 

the development of combination therapies that employ a variety of compounds target

ing different stages in the virus life cycle. A promising candidate is hypericin (Figure 1), 

a naturally occurring polycyclic quinone that displays potent light-induced antiviral ac

tivity against a number of enveloped viruses, including HIV-1 [3-7]. 

HO 

HO 

(a) (b) 

Figure 1. Hypericin (a) and luciferin (b). 
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Hypericin is a photosensitizing compound [8]. The antiviral activity of hypericin 

is enhanced more than 100-fold in the presence of light [3-7]. Upon illumination, hypericin 

produces singlet oxygen very efficiently, with a quantum yield of 0.73 [9]; and some 

studies have suggested that its antiviral activity is due to the production of singlet oxy

gen [4-6]. The excited-state reactivity of hypericin, however, extends well beyond the 

photosensitization of oxygen to form singlet oxygen. Recent work suggests that antivi

ral activity may be due to complex mechanisms involving the superoxide anion and 

hypericinium ion, implicating a Type I radical mechanism [10-12]. Moreover, we have 

observed that oxygen is not required for the antiviral activity of hypericin [13]. 

The mechanism by which hypericin inactivates HIV infectivity is not clear. Meruelo 

and coworkers [4,5] have reported that in the presence of light, hypericin induces sig

nificant changes in the HIV capsid protein, p24; and they suggest that cross-linking and 

other alterations of p24 may inhibit the release of reverse transcriptase activity. It is 

significant that these workers found that under ambient lighting conditions, 4 pM hypericin 

did not inhibit the binding of gp120 to CD4 cells, nor the formation of syncytia. However, 

inhibition of gp120 binding was observed under conditions of more intense illumination 

[4]. Other studies also have reported inhibition of syncytia formation under relatively 

high levels of illumination [6]. Together, these results suggest that observed differ

ences in the biological effects of photoactivated hypericin depend on the irradiance and 

the concentration of photosensitizer. Thus, under relatively low light conditions, there is 

minimal damage to viral and/or cell membranes and the antiviral activity is associated 

with changes in viral capsid proteins. With increasing light intensity, the biological ef

fects expand to include interactions between virus and cell membranes. 

The usefulness of photosensitizers such as hypericin for treatment of viral infec

tions in vivo is hampered by the dependence on light for optimal virucidal activity. In 
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this article we discuss a strategy to place in the proximity of hypericin a chemilumines-

cent light source so that photodynamic therapy can be extended to all regions of the 

body. What is required is a light source that emits a broad band of wavelengths in the 

region where the photoactive molecule adsorbs. An excellent choice for the light source 

is luciferin (Figure 1). The reaction of iuciferin with the enzyme luciferase and molecu

lar oxygen produces light in the 520-680 nm region with a quantum efficiency of about 

unity: [14-18] (Figure 2). Hypericin adsorbs light strongly in this range (Figure 3), sug

gesting that energy transfer between the product of the chemiluminescent reaction (Fig

ure 2) and hypericin may be sufficient to effect significant antiviral activity. 

- XXH/' ATP O 

O2 

a) b) c) 

hi) 

Figure 2. Crucial intermediates in the production of firefly chemiluminescence. 
[14,18,24].Luciferin (a) is catalyzed by the enzyme luciferase in the presence of ATP, 
Mg2+, and O2 to form the high energy four-member peroxide or dioxetanone intermedi
ate (b). This intermediate subsequently decarboxylates to fomi the chemiluminescent 
species oxyluciferin (c). 
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Figure 3. Spectral overlap between the visible portion of the absorption spectrum of 
hypericin and the chemiluminescence from the luciferase catalyzed oxidation of lu-
ciferin. The reaction is carried out at 25°C in glycylglycine buffer containing 2.67 x 10"^ 
M luciferase: 1.18 x 10"® M luciferin, and 5 x 10'^ M ATP. The efficiency of the nonradiative 
energy transfer in a Forster energy transfer mechanism is given by RQ, the critical dis
tance. RQ is the distance at which the rate of energy transfer is equal to the inverse of 
the fluorescent lifetime of the donor: for randomly oriented donors and acceptors. RQ 
can be calculated from the fluorescence spectrum of the donor and the absorption 
spectrum of the acceptor [21-23] 

kgr — 
_1_ 

R 

\6 
Ro = 

9000(Cn 10)(t)o 2 

128 7C n^'N 
J FD(v)e^(v)v4dv. 

where n is the index of refraction of the medium, N is Avogadro's number, ({)• is the 
fluorescence quantum yield of the donor, Fd(v) is the spectrum of the donor emission 
normalized to one on a wavenumber scale, and £a(v) is the decadic molar extinction 
coefficient (in liter mol"' cm"^) on a wavenumber scale. 
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Materials and Methods 

Reagents. Hypericin was obtained from Carl Roth GmbH & Co. and solubilized 

in DMSO to 1 mg/ml. Stock solutions were stored at 4°C. Luciferase from the North 

American firefly {Photinus pyralis) and luciferin were obtained from Sigma, resuspend 

in glycylglycine buffer (25 mM glycylglycine, 15 mM MgS04,4 mM EGTA, pH 7.8) and 

aliquots were stored at -60°C. 

Optical measurements. Rar optical assays, luciferase and luciferin were resus-

pended in glycylglycine buffer and reactions were initiated by the addition of a freshly 

prepared solution of ATR Light output was measured with a liquid-nitrogen cooled 

charge-coupled device (CCD) (Princeton Instruments LN/CCD-1152UV) mounted on 

an HR320 (Instruments SA, Inc.) monochromator with a grating (1200 g/mm) blazed at 

5000 A. Handling of reagents before initiation of the luciferase/luciferin reaction was 

done under extremely low lighting levels. 

Cells and virus. Equine dermal cells (ATCC CCL57) were grown in Dulbecco's 

modified Eagle's medium supplemented with 20% fetal bovine serum and antibiotics 

(DMEM). The MA-1 isolate [19] of equine infectious anemia virus (EIAV) was used in 

all assays. 

Titration of infectious virus. Cell-free stocks of EIAV containing approximately 

10^ focus-forming units/ml (FFU/ml) of EIAV, were diluted 1:10 in Hank's buffered sa

line solution (HBSS) in 24-well tissue culture plates and hypericin, luciferin, and lu

ciferase were added to the final concentrations indicated in the Figure legends. Chemi-

luminescence was initiated by the addition of ATP. Plates were wrapped with aluminum 

foil and incubated 30 min at room temperature. Controls included samples in which 

hypericin or luciferase were omitted and samples incubated in ambient room light. Vi-
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rus infectivity was quantitated using a focal immunoassay similar to that previously 

described [3,19,20]. Results are expressed in terms of focus forming units (FFU) per 

ml supernatant. All experimental manipulations were done in subdued light. 

Results 

First it is necessary to compare the chemiluminescent emission of the luciferase 

catalyzed oxidation of luciferin and the absorption spectrum of hypericin in the red 

region of the visible spectrum (Figure 3). The high degree of overlap between these 

spectra supports the hypothesis that the chemiluminescent emission generated from 

the luciferin/luciferase reaction is capable of photoactivating hypericin. Further support 

for this hypothesis is demonstrated by the finding that, in the presence of hypericin, the 

chemiluminescent emission of the luciferase/luciferin reaction is attenuated in the re

gion corresponding to the absorption spectrum of hypericin (Figure 4). Calculations 

based on Forster theory suggest that the so-called "critical distance" for energy trans

fer between these two species is about 100 A (see the caption to Figure 3). The critical 

distance, RQ, is the distance at which the rate of energy transfer is equal to the rate at 

which the excited state of the donor decays. In other words, RQ is the distance at which 

the rate of energy transfer is equal to the rate of fluorescence decay: and Op is the 

fluorescence lifetime, and R is the separation between randomly oriented donors and 

acceptors [21-23]. The large value of 100 A obtained for RQ is partly a result of the high 

degree of spectral overlap between the chemiluminescent emission, but it is also a 

result of the extremely efficient yield of chemiluminescence. Approximately one photon 

is produced for every molecule of luciferin [14-18]; that is, the quantum yield of the 

donor, C)p, is unity. Comparable values of Rq are observed for the pigments that con-
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Figure 4. Attenuation of luciferin chemiluminescence by hypericin 
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stitute donor-acceptor pairs for energy transfer in photosynthesis [23]. Therefore, en

ergy transfer between luciferin/luciferase and hypericin is possible even when the donor 

and the acceptor are not constrained to be at a fixed distance or orientation with re

spect to each other. These results immediately suggest the possibility of exciting 

hypericin by means of a chemiluminescent reaction to exploit its photoinduced virucidal 

activity without an external light source. 

1 
^ET = kp : where kp = — i 

To test the idea that the chemiluminescent reaction can induce virucidal activity 

in hypericin, cell-free EIAV was treated with varying concentrations of hypericin in a 1 

ml solution containing luciferin and luciferase (Figure 5). Reactions were incubated 30 

min at room temperature in the dark, and inoculated onto ED cells in the presence of 8 

pg/ml polybrene. At high concentrations of hypericin, there is approximately a ten-fold 

reduction of viral infectivity under conditions where the sole source of excitation was 

the chemiluminescent luciferin/luciferase system. The chemiluminescent light-generat-

ing system was not, however, as effective in activating hypericin as illumination from a 

continuous source. A major difference in the light output from the chemiluminescent 

reaction and, for example, ambient fluorescent light is that the light intensity from the 

chemiluminescent reaction decreases with time. Figure 6 depicts the rapid decay in 

chemiluminescence following luciferase-catalyzed oxidation of luciferin. Further experi

ments were done to determine if increased antiviral activity could be achieved by an 

increase in the amount of light initially available for hypericin activation. A linear de

crease in viral infectivity was observed when the concentration of luciferase was varied 

in the presence of a constant concentration of hypericin (Figure 7). This suggests that 

optimal activation of hypericin depends on the local concentration of energy donors. 
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Figure 5. Effect of chemiluminescence on the antiviral activity of hypericin. EIAV was 
incubated in the dark at room temperature in the presence of 0.8 pM luciferase, 10 pM 
luciferin, 2 mM ATP, and increasing amounts of hypericin (O). Control samples include 
those containing virus and hypericin only (•), and parallel samples exposed to ambient 
room light (•). Infectious virus was titrated using a focal immunoassay, and the results 
are reported as focus-forming units/ml (FFU/ml) reaction. 
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Figure 6. Time course of the chemiluminescent reaction of luciferin and luciferase. 
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Figure 7. Effect of luciferase concentration on antiviral activity of hypericin after chemi-
luminescence. EIAV was incubated with 0(«) or 10 (O) pg of hypericin per ml in the 
presence of 5 mM luciferin, 2 mM ATP, and increasing amounts of luciferase. Reaction 
mixtures were incubated in the dark for 30 minutes at room temperature, and results 
are reported as FPU per ml of reaction mixture. 
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Discussion 

Hypericin is a naturally occurring photosensitizer that displays potent antiviral 

activity against a variety of clinically important enveloped viruses, including HIV-1. One 

drawback to the use of hypericin and other photosensitizers as effective chemothera-

peutic agents for treatment of viral infections in vivo is the requirement for light for 

optimal virucidal activity. A possible approach to circumvent this problem is the devel

opment of methods for chemiluminescent activation of hypericin in vivo. In the present 

report, we have demonstrated that the chemiluminescent reaction of luciferin and lu-

ciferase produces a sufficient amount of light to bleach the absorption spectrum of the 

virucidal agent, hypericin, even when there is no covalent attachment between these 

two reactants. Most importantly, the amount of light transferred to hypericin under 

these conditions is sufficient to produce significant antiviral activity. It is important here 

to stress that the mechanism of activation of hypericin is not the same in the two cases. 

Activation of hypericin by a light source, such as a projector bulb, involves the emission 

of a photon from the source and its subsequent absorption by hypericin. In the chemi

luminescent reaction between luciferin and luciferase, an excited-state singlet, oxylu-

ciferin, is produced [24]. Oxyluciferin is subsequently capable of being deactivated 

nonradiativelyby Forster energy transfer to hypericin (Figure 3). 

The chemiluminescent system is not as effective (Figure 5) in activating the 

antiviral activity of hypericin as is a continuous source of illumination. This is most 

likely a result of suboptimal distance and orientation between the donor and acceptor 

Thus, the antiviral activity of hypericin increases proportionally with increasing concen

trations of luciferase, providing further evidence that the limitation of the chemilumines

cent reaction is the availability of localized concentrations of acceptable energy donors, 

which specifically interact with hypericin. Therefore, the proximity of the reactants may 
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be more crucial for the virucidal activity than the concentration of any one reactant. Any 

in vivo application of chemiluminescent activation of hypericin would require a delivery 

system that ensures a high local concentration of hypericin and luciferin/luciferase. 

It is possible that in some cases the reduced antiviral activity of hypericin when 

using chemiluminescence as compared to an external light source may result from the 

consumption of oxygen by the luciferase/luciferin reaction (see the caption to Figure 2). 

In the presence of oxygen, hypericin produces singlet oxygen very efficiently (with a 

quantum yield of 0.73 [9]), and some studies have suggested that its antiviral activity is 

due to the production of singlet oxygen [4-6]. If so, localized depletion of oxygen by 

iucifern/luciferase may be expected to reduce the antiviral activity of hypericin. We 

[13,25,26] have, however, questioned the relative importance of singlet oxygen in the 

toxicity of hypericin towards HIV and related viruses. For example, hypericin is closely 

related [27], both structurally and spectrally, to the photoreceptor of the protozoan cili-

ates, Stentor coerulus and Blepharisma japonicum [27,28]. This photoreceptor confers 

upon the organism its biologically necessary photophobic and phototactic responses. 

Under conditions of ambient light the stentorin chromophore and hypericin are nontoxic 

to the organism. On the other hand, the singlet oxygen produced from these chro-

mophores is toxic to S. coerulus under high light flux (-5000 W/m^) [29]. It is an open 

question, therefore, whether the virucidal activity of hypericin following limited exposure 

to room light [3-6] is due to photosensitized generation of singlet oxygen by hypericin, 

or because of the presence of additional nonradiative decay processes of the excited 

states of hypericin. Recent studies in our laboratory indicate that oxygen is not re

quired for antiviral activity of hypericin, although In some cases it may play a role [13]. 

An alternative origin for the photoinduced antiviral activity of hypericin may lie in its 

ability to produce a photogenerated pH drop, as is observed with the stentorin chro-
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mophore [30-31]. We have identified rapid intramolecular proton transfer in hypericin 

[25,26], which is likely to precede the solvent acidification. Furthermore, several inves

tigations have documented the importance of pH in the replication cycle of certain 

enveloped viruses by regulating uncoating [32-34]. 

The finding that the antiviral activity of hypericin can be activated by chemilumi-

nescent reactions may have important implications for the development of novel meth

ods for treatment of viral infections such as HIV-1. In vivo generation of luciferase 

could be accomplished using gene therapy approaches that employ luciferase as a 

susceptibility gene. Moreover, expression of the luciferase gene could be regulated if 

placed under the control of a promoter containing HIV-1 TAR sequences, limiting 

photoactivation of hypericin to virus-infected cells. This would result in a "molecular 

flashlight" in which light is turned on or off, depending on the presence of a transacting 

viral protein. Recent studies demonstrating the tumoricidal effects [35] of hypericin 

suggest that similar technology could be applied to gene therapy approaches for the 

treatment of cancer. This work is concerned with a theoretical approach to antiviral 

therapies; and more practical issues must await further experimentation. Further ef

forts to optimize the energy transfer between luciferin and hypericin are needed to im

prove the feasibility of the "molecular flashlight" as a viable anti-viral and anti-cancer 

therapy 
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CHAPTER 7 LIGHT-INDUCED ACIDIFICATION BY THE ANTIVIRAL AGENT 

HYPERICIN 

A paper published in the Journal of the American Chemical Society^ 

M. J. Fehr^, M. A. McCloskey^'®, and J. W. Petrich^'^ 

Abstract 

The naturally occurring polycylcic quinone, hypericin, possesses light-induced 

antiviral activity against the human immunodeficiency virus (HIV) and other closely 

related enveloped Antiviruses such as equine infectious anemia virus (EIAV). We have 

previously argued that hypericin undergoes a fast proton transfer reaction in its singlet 

state (J. Phys. Chem. 1994, 98,5784). We have also presented evidence that the light-

induced antiviral activity of hypericin does not depend upon the formation of singlet 

oxygen {Biorg. Med. Chem. Lett. 1994, 4, 1339). It is demonstrated here that steady-

state illumination of a solution containing hypericin effects a pH drop. When hypericin 

and an indicator dye, 3-hexadecanoyl-7-hydroxycoumarin, are both imbedded in vesicles, 

hypericin transfers a proton to the indicator within a time commensurate to its triplet 

lifetime. Proton transfer to the indicator is not observed when the indicator is proto-

^ Reprinted with permission from the Journal of the American Chemical Society "1995, 
117,1833. Copyright 1995 © American Chemical Society. 
2 Graduate student and Associate Professors, Department of Chemistry and Depart
ment of Zoology and Genetics, Iowa State University. 
3 To whom correspondence should be addressed. 
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nated or when the system is oxygenated. Since hypericin is known to fomn triplets and 

to generate singlet oxygen with high efficiency, this latter result is taken to confirm triplet 

hypericin as a source, but not necessarily the only source, of protons. 

Introduction 

Hypericin (Figure 1) possesses light-induced antiviral activity against the hu

man immunodeficiency virus (HIV) [1] and other closely related enveloped lentiviruses 

such as equine infectious anemia virus (EIAV) [2]. Hypericin has a large triplet yield 

(0.70 in ethanol [3]) and is capable of generating significant quantities of singlet oxy

gen [3-6]. It has up till now been assumed that the virucidal activity of hypericin is a 

result of its production of singlet oxygen. We, however, have recently reported that 

oxygen is not required for antiviral activity [7]. On the other hand, solutions of the 

chromophore of the photoreceptor of the protozoan ciliate S. coerulus, which is very 

similar both structurally and spectrally to hypericin, produce a pH decrease upon opti

cal excitation [8]. We have argued that hypericin undergoes excited-state proton trans

fer in its singlet state [9-11] and that, consequently, it possesses labile protons. We 

have suggested that the virucidal activity of hypericin may be related to its ability to 

acidify its environment upon optical excitation [7,9-12]; and we have proposed chemical 

methods of illuminating hypericin for antiviral therapies [12]. Given the potentially great 

importance of photogenerated protons from hypericin as an antiviral or antitumor therapy, 

the present work was performed in order to determine the nature (singlet or triplet) of 

source of the photogenerated proton. These studies were undertaken largely in phos

pholipid vesicles suspended in aqueous medium in order both to circumvent the insolu

bility of hypericin in water as well as to provide a simplified model of the viral mem
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brane, within which hypericin is thought to partition. 

Experimental 

In order to observe and measure the deprotonation of hypericin, with for ex

ample a pH indicator dye, it is necessary that the proton donor and the acceptor are in 

close enough proximity so that the proton transfer event can be efficiently observed. 

Since hypericin is insoluble in water from pH 2 to 11, a system that takes all of these 

factors into account is provided by optically clear phosphatidylcholine vesicles, such as 

dipalmitoylphosphatidlycholine (DPPC), suspended in aqueous buffer Hypericin is 

soluble in the vesicle bilayer; and although hypericin is hydrophobic, a portion of the 

hypericin population may be reasonably assumed to orient so that the ejected protons 

are available to the bulk solvent. The vesicles have been prepared by the method 

described by Huang [13] and are expected to have an outer diameter of -250-300 A 

and an inner diameter of -120 A. Huang [13] reports a maximum bilayer dimension of 

73 A, of which -30 A corresponds to the hydrocarbon region where hypericin is as

sumed to be located. The x-ray structure of hypericin indicates that it has a long axis of 

10.5 A and a short axis of 9.6 A [14]. Consequently, single hypericin molecules are not 

capable of spanning the bilayer. 

The pH indicator dyes used here are either incorporated in the aqueous interior 

of the vesicle or in the hydrocarbon portion of the lipid bilayer. Two indicators were used 

to probe the deprotonation of hypericin. BCECF (2'-7'-bis(2-carboxyethyl)-5-(and 6)-

carboxyfluoroscein), was obtained from Molecular Probes and used exclusively in the 

steady-state experiments. The second indicator, used for the time-resolved absorption 

experiments, was the lipophilic pH indicator 3-hexadecanoyl-7-hydroxycoumarin (Mo
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lecular Probes). All procedures discussed below were carried out under subdued light

ing. All solutions were stored in the dark and were usually purged with argon. 

Vesicles were prepared according to the procedure of Huang [13]. The specific 

indicator used in the preparation depended on whether the vesicles were destined for 

steady-state fluorescence or transient aborption measurements. DPPC (Sigma) was 

dissolved in 95% ethanol to a final concentration of 2 mM. 

For steady-state fluorescence measurements, 5 mL of the DPPC solution and a 

hypericin/ethanol solution (1 mg/mL) were mixed and then evaporated to dryness on a 

rotovap. 1 mL of a 0.12 M NaCI/0.03M NaNg solution in which 1 mg of BCECF was 

dissolved were added to the dry product, and the solution was heated to 10 degrees 

above the DPPC transition temperature (54-56 °C) until all of the DPPC/hypericin/indi-

cator mixture was suspended. NaNg was introduced to scavenge oxygen and thus to 

obviate singlet oxygen production. Vesicles were formed by sonicating the resulting 

suspension until optically clear using either a Cole Palmer Model 8890 bath sonicator 

for approximately 1.5 hours or a Fisher Sonic Dismembrator Model 300 fitted with a 

microtip for 40 minutes. BCECF that was not entrapped inside the vesicle was re

moved by passing the vesicle system over a size exclusion column (Sepharose 48). 

For time-resolved measurements, 5 mL of the DPPC solution, a hypericin/etha

nol solution (1 mg/mL), and a 3-hexadecanoyl-7-hydroxycoumarin/ethanol solution (1 

mg/mL) were mixed and then evaporated to dryness on a rotovap. 2 ml of a 0.12 M 

NaCl/0.03M NaNg solution were added to the dry product and the solution was heated 

to 10 degrees above the DPPC transition temperature until all the DPPC/hypericin/ 

indicator mixture was suspended. Vesicles were prepared as described above. Since, 

however, all of the indicator is assumed to be partitioned into the bilayer, the system 

was not passed over a size exclusion column. 
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Steady-state fluorescence excitation spectra were obtained on a SPEX 

Fluoromax. For steady-state pH experiments, hypericin was excited by a 300-W tung

sten bulb fitted with 575-nm cut-off filters. Background light with the bulb on was less 

than 0.3 % of the signal. Light available at the cuvette was 8-9 mW. Time-resolved 

absorption data were obtained with the microsecond flash photolysis system [15] gen

erously made available to us by Professor J. H. Espenson. Kinetic traces were the 

average of 4 shots. The excitation pulse had a duration of -600 ns and an energy of 

-70 mJ at 490 nm. Steady-state absorption spectra were recorded on a Shimadzu UV-

2101 PC. 

Results and Discussion 

A. Hypericin Produces a Light-Induced pH Drop. Steady-State Measurements 

Figure 1 presents the steady-state absorption and fluorescence spectra of 

hypericin in DPPC vesicles in water at pH 8.4. Hypericin is insoluble in pure water from 

pH 2 to 11, where it forms aggregates [16]. The steady-state spectra resemble those of 

hypericin in DMSO, which indicates that aggregation is not occurring. In DPPC vesicles, 

the absorption maximum of hypericin is 598 nm and the fluorescence emission maxi

mum is 599 nm. The spectra at pH 5.9 and pH 8.4 are essentially identical. 

Figure 2 demonstrates the ability of hypericin to acidify a solution of the indicator 

dye BCECF and hence its capacity to produce a light-induced pH drop much like the 

structurally and spectrally analogous stentorin chromophore [8,17]. BCECF possesses 

4 to 5 negative charges at pH values between 6.5 and 7.5, which are responsible for its 

retention in the aqueous interior of the vesicle. BCECF possesses pH-dependent emis-
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Figure 1. 
Steady state absorption ( ) and fluorescence ( ) spectra of hypericin 

dissolved in the lipid bilayer of DPPC vesicles suspended in water at pH 8.4. For the 
absorption spectrunrt, the hypericin concentration is 23 |j,M. Based upon the similarity 
of the absorption spectrum with that in DMSO, the extinction coeffients used are those 
using DMSO as the solvent. Inset: transient absorption due to triplet hypericin dis
solved in the lipid bilayer of DPPC vesicles, = 490 nm, Xprobe = 505 nm. AA(t) = 0.041 
exp(-t/10 us) + 0.018 exp(-t/75 |is). The hypericin concentration is 24 |xM. DPPC vesicles 
were suspended in water at pH = 8.2. Malkin and Mazur [18] measured the triplet 
lifetime of hypericin in pure ethanol to be single exponential with a duration of 43 |is. 
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sion and absorption spectra. Light-induced pH changes were monitored by collecting 

fluorescence excitation spectra of BCECF at an emission wavelength of 535 nm. The 

presence of the isosbestic point at 439 nm (which corresponds to an isoemissive point, 

assuming the exact equivalence of the absorption and fluorescence excitation spectra) 

facilitates accounting for dye degradation and for dye leakage from the vesicles. 

Of the three separate sample preparations, at different initial pH values, a 

maximum pH change of 0.5 units is observed. It is important to note that this pH 

change neither reflects the total number of protons ejected by hypericin nor the 

macroscopic pH of the solution. Rather, it is a measure of the number of protons 

detected by the indicator. Here, it is useful to consider the following. In a single small 

unilamellar vesicle (SUV) there is a 50 fold excess of hypericin to BCECF Not all of 

the hypericin, however, is necessarily located in a region where dissociated protons 

can enter the vesicle interior. Because the ratio of phosphatidylcholine between the 

inner and the outer vesicle bilayer is roughly 1:1.5, hypericin may partition into the 

outer portion of the vesicle bilayer, away from the interior. It is also likely that one or 

both of the following occurs: either the majority of the dissociated protons recombine 

with the parent hypericin anion within the bilayer and never protonate the indicator; or 

the dissociated protons escape from the parent anion but remain undetected be

cause they are released to the bulk solvent where no indicator is present. 

B. A Source of the Photogenerated Proton. Time-Resolved Measurements 

In order to determine from which excited electronic state the proton originates, 

time-resolved measurements were required. Tlie lipophilic indicator, 3-hexadecanoyl-

7-hydroxycoumarin, was most suitable for time-resolved absorption measurements (given 
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the available experimental apparatus) because the extinction coefficient of its 

unprotonated form in the region from 400-430 nm is larger than that of hypericin and 

because its extinction coefficient at the laser excitation wavelength (490 nm) is very 

small (Figure 3). 

The decay of the absorbance due to the hypericin triplet in vesicles at 505 nm is 

presented in the inset to Figure 1. This decay Is biphasic with time constants of 10 and 

75 us. It is reasonable to attribute the biphasic decay to various orientations of hypericin 

in the vesicle bilayer. (The variation in the lifetimes is to be expected given the distribu

tion of vesicles in a given preparation.) 

Figure 4a presents the transient at 400 nm of the 3-hexadecanoyl-7-

hydroxycoumarin indicator subsequent to ©(citation of hypericin at 490 nm. The tran

sient is a bleach whose recovery is represented by two time constants: 32 and 170 |is. 

This signal is interpreted as proton transfer from hypericin to the indicator on a time 

scale commensurate to that of the lifetime of triplet hypericin. It is reasonable for the 

proton transfer event to be so rapid. (Diffusion of the proton is not expected to be rate 

limiting (assuming the diffusion constant of the proton to be that in water (9.3 x 10 ® cmV 

s [19])). Protonation of the anionic form of the indicator decreases its population and 

consequently reduces its absorbance at 400 nm. The persistant bleach of the indicator 

at long times can be attributed to the slow reestablishment of equilibrium between the 

acidic and basic forms of the indicator, as is observed in other systems [19]. 

Although hypericin has a ground-state aborption at 400 nm (Figure 1), this sig

nal cannot be attributed to the ground-state of hypericin for the following reasons: 

1. At 400 nm the extinction coefficients of the indicator and hypericin are 35,900 

and 10,100 M'^cm"\ respectively: and the molar ratio of indicatorto hypericin is approxi

mately one to one. 
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Figure 2. 
Fluorescence excitation spectra of BCECF (0.52 )xM) entrapped in DPPC vesicles. 

Hypericin is dissolved in the lipid bilayer at a concentration of 23 [iM. Solid lines 
( ) denote the indicator spectrum in the absence of hypericin illumination; dashed 
lines (—), in the presence of hypericin illumination. See experimental section. Three 
sets of experiments are depicted in the Figure: (a) initial pH = 8.1; (b) initial pH = 7.6; 
(c) inital pH = 6.45. 
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Figure 3. 
Absorption spectra, as a function of pH, of 3-hexadecanoyl-7-hydroxycoumarin 

at the lipid/water interface of DPPC vesicles. Isosbestic points are at 381 nm and 291 
nm. The broad triplet absorption spectrum of hypericin and the wavelength of the laser 
pulse (Xex = 490 nm) dictated the choice of this dye, which absorbs principally to the 
blue of 450 nm. The protonated form of the indicator has an absorption maximum at 
365 nm; the anionic or deprotonated form, at 425 nm. 
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2. The time constants for the bleaching recovery in the presence of the indicator 

are longer than for those observed for hypericin alone in vesicles. 

3. Most importantly, at long times the transient at 400 nm for hypericin alone in 

vesicles yields a net absorption whereas in the presence of indicator on the same time 

scale the bleaching has not yet recovered. 

Furthermore, the signal cannot arise from the indicator itself since 3-hexadecanoyl-

7-hydroxycoumarin exhibits no transient absorption at 400 nm (Figure 4a). 

Another confirmation of the trace in Figure 4a to a transfer of a proton from 

hypericin to the indicator is based on the reasoning that if the long component of the 

kinetic trace representing a persistent bleach is due to the the protonation of the indica

tor by hypericin, performing the experiment at a pH where the indicator is already com

pletely protonated ought to replace this perisistent bleach with a net absorption at long 

times that is characteristic of the control experiment using hypericin alone. This result 

is in fact observed (Figure 4b). 

Finally, a goal of this work is to determine if the proton is ejected from the triplet 

or singlet state. The triplet yield of hypericin in ethanol and in BRIJ 35 micelles is -0.70 

[3-5]. Molecular oxygen efficiently quenches triplet hypericin to form singlet oxygen [3-

6]. Consequently, at sufficiently high oxygen levels, the concentration of triplet hypericin 

should be negligible. Figure 4c demonstrates that when the system of hypericin and 

the indicator is oxygenated, no bleaching of the indicator is observed. This result, 

therefore, suggests the absence of proton transfer to the indicator. 
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Figure 4. 
(a) Transient absorption at 400 nm of 3-hexadecanoyI-7-hydroxycounnarin sub

sequent to excitation of hypericin at = ^90 nm. Both the indicator (23.3 |iM) and 
hypericin (21.0 {ilVl) are contained in the bilayer of DPPC vesicles at pH 8.4. 

The decrease in the anionic form of the indicator owing to excited-state protona-
tion by hypericin monitored by a transient reduction of the induced bleach of the anionic 
form of the indicator at 400 nm. AA(t) = -0.012 exp(-t/32 |xs) - 0.0050 exp(-t/170 |is). 

The control experiment for hypericin alone in vesicles at pH 8.3 yields a trace 
that is fit to the form: AA(t) = -0.0062 exp(-t/15 |is) - 0.0067 exp(-t/55 jxs) + 0.0080. 

A second control experiment using only the indicator alone in vesicles at pH 8.3 
yields the trace about zero. This trace demonstrates that in the absence of hypericin no 
transient absorption is induced in the indicator at 400 nm subsequent to excitation at 
490 nm. 
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Figure 4 (cont.) 
(b) Induced bleaching and its recovery at 400 nm for 3-hexadecanoyl-7-

hydroxycoumarin and hypericin in DPPC vesicles at acidic and basic pH; = 490 nm. 
At pH 5.7, AA(t) = -0.0030 exp(-t/9.4 |is) - 0.0099 exp(-t/56 fis) + 0.00080. 
At pH 8.2, AA(t) = -0.0045 exp(-t/26 |is) - 0.0065 exp(-t/130 us). 
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Figure 4 (cont.) 
(c) Induced bleaching and its recovery at 400 nm for 3-hexadecanoyl-7-

hydroxycoumarin and hypericin in DPPC vesicles in oxygenated and deoxygenated 
solution; = 490 nm. The absence of a signal in the oxygenated sample is taken as 
proof that the triplet state of hypericin is responsible for the protonation event. (Under 
oxygen levels at which the signal is quenched, hypericin is still fluorescent and the 
indicator absorption spectrum remains unchanged. Consequently the absence of the 
signal cannot be a result of quenching the singlet state or of destruction of the indica
tor.) The transient signal for the deoxygenated sample is described well by AA(t) = -
.0045 exp(-t/26 |xs) - 0.0065 exp(-t/130 |is). 
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Conclusions 

Our previous picosecond experiments provide strong evidence for intramolecu

lar proton transfer in the excited singlet state of hypericin and suggest that hypericin is 

a source of light-induced protons [9-11]. That hypericin does indeed produce a light 

induced pH drop is demonstrated by steady-state experiments (Figure 2). Flash pho

tolysis experiments on the microsecond time scale using molecular oxygen as a triplet 

quencher indicate that the triplet state of hypericin is a proton donor (Figure 4). No 

conclusions conceming the role of the first excited singlet state of hypericin as a proton 

donor can be drawn since the time-resolved measurements discussed above cannot 

detect rapid protonation and deprotonation equilibria between the donor and the ac

ceptor. It is likely that much will be learned by studying the detailed interactions of 

hypericin with the viral membrane, which have been crudely mimicked here by vesicles. 
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CHAPTER 8. THE ROLES OF OXYGEN AND PHOTOINDUCED ACIDIFICATION 

IN THE LIGHT-DEPENDENT ANTIVIRAL ACTIVITY OF HYPOCRELLIN A 

A paper submitted for publication in Biochemistry^ 

M. J. Fehr^, S. L. Caipenter®'^, and J. W. Petrich^'® 

Abstract 

Hypocrellin A displays photoinduced antiviral activity, in particular against the 

human immunodeficiency virus (HIV), as does its counterpart, hypericin. Unlike 

hypericin, however, hypocrellin A absolutely requires oxygen for its antiviral activity. 

Also, whereas we have previously demonstrated that hypericin functions as a light-

induced proton source, we do not observe that hypocrellin A acidifies its surrounding 

medium in the presence of light. These results are discussed in the context of the 

ground- and excited-state photophysics of hypericin and its mechanisms of 

photoactivated virucidal activity. 

' Reprinted with permission from Biochemistry. Copyright 1995 ©American Chemical 
Society. 
2 Graduate student and Associate Professors, Department of Chemistry and Depart
ment of Microbiology, Immunology, and Preventive Medicine, Iowa State University. 
3 To whom correspondence should be addressed. 
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Introduction 

Hypocrellin A (Figure 1) is a naturally occurring perylene quinone found in a 

parasitic fungus that is common in parts of the People's Republic of China and Sri 

Lanka (Diwu & Lown, 1990; Diwu et al., 1989). Hypocrellin has been used as a 

photothenapeutic agent for various skin diseases and tumors and has been taken orally 

as a folk medicine for several centuries in China (Diwu & Lown, 1990; Diwu et al., 

1989). Like the related polycyclic quinone, hypericin (Meruelo et. al.,1988: Degar et al., 

1992; Lenard et al., 1993; Meruelo et. al., 1992; Carpenter & Kraus, 1991), hypocrellin A 

posseses light-induced toxicity against the human immunodeficiency virus, HIV and 

related viruses (Hudson et al., 1994). This common property of hypocrellin A and 

hypericin has led us to examine in more detail the similarities and differences between 

these chromophores. 

H3C0 

H3C0 

COCH3 

a) 

> N / 
H H 

b) 

Figure 1. Structures of (a) hypocrellin A and (b) hypericin. 
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Hypericin lias a large triplet yield (0.70 in ethanol (Jardon et al., 1986)) and is 

capable of generating significant quantities of singlet oxygen (Meruelo et. al.,1988; Degar 

et al., 1992; Lenard et al., 1993; Meruelo et. al., 1992). The virucidal activity of hypericin 

results, in part, from production of singlet oxygen. We, however, have recently reported 

that oxygen is not requiredior antiviral activity (Fehr et al., 1994). We have argued that 

hypericin undergoes excited-state proton transfer in its singlet state (Gai et al., 1993, 

1994a, 1994b) and that, consequently, it possesses labile protons. We have hypoth

esized that the virucidal activity of hypericin may be related to its ability to acidify its 

environment upon optical excitation (Fehr et al., 1994; Gai et al., 1993,1994a, 1994b): 

and we have proposed chemical methods of illuminating hypericin for antiviral thera

pies (Carpenter et al.,1994). We have, furthermore, demonstrated that illumination of a 

solution containing hypericin effects a pH drop. When hypericin and an indicator dye 

are kept in relatively close proximity by the use of vesicles, hypericin transfers a proton 

to the indicator within its triplet lifetime (Fehr et al., 1995). Proton transfer to the indica

tor is not observed when the indicator is protonated or when the system is oxygenated. 

Since hypericin is known to fotm triplets and to generate singlet oxygen with high effi

ciency, this latter result is taken to confirm triplet hypericin as a source, but not neces

sarily the only source, of protons. 

Hypocrellin A has a quantum yield for singlet oxygen of 0.83 in benzene (Diwu & 

Lown, 1992). It also possesses structural features that are very similar to those of 

hypericin: in particular, the hydroxy! groups p to the carbonyl groups. Given this latter 

feature coupled with our understanding of the photophysical properties of hypericin, as 

summarized above, we would expect hypocrellin A to exhibit other similarities in its 

light-induced antiviral activity. In particular, we would expect that, like hypericin, 

hypocrellin does not require oxygen for its virucidal activity and that it is also capable of 
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intermolecular proton transfer That we observe neither of these phenomena in hypocrellin 

suggests an important role for the aromatic skeleton of hypericin and will have implica

tion for the design of other light-induced antiviral agents. 

Materials and Methods 

Titration of infectious virus: As in our previous work, antiviral assays em

ploy EIAV (equine infectious anemia virus). EIAV is exceptionally well-suited to assay 

for activity against HIV since it is an enveloped lentivirus structurally, genetically, and 

antigenically related to HIV (Chiu et al., 1985; Casey et al., 1985; Gonda et al., 1986). 

All experimental manipulations were performed in subdued light. Cell-free stocks of the 

MA-1 isolate of equine infectious anemia virus (EIAV) (Carpenter & Kraus, 1991) were 

diluted 1:10 in phosphate buffered saline (PBS) containing no or 10% fetal bovine se

rum. Hypericin (Carl Roth GmbH & Co.) or hypocrellin A (Molecular Probes) were 

added to a final concentration of 10 |ig/ml. Deoxygenation and illumination of samples 

is described below. A focal immunoassay similar to that previously described was used 

for quantifying infectious virus. Results are given for three independant experiments, 

and are expressed as focus forming units (FPU) per ml sample. 

Oxygen assays: Samples were deoxygenated by bubbling Ar in light-tight con

tainers and exposed to light for 15 minutes from a 300-W projector bulb fitted with a cut

off filter blocking wavelengths shorter than 575 nm. The irradiance at the sample was 

estimated to be 170 W/m^ in the spectral range in which hypericin absorbs, 575-600 

nm. Hypocrellin/EIAV samples were exposed to identical conditions. Deoxygenation 

efficiency was evaluated as described previously (Fehr et al., 1994). A dissolved oxy

gen test kit (Hach, 0X-2P) showed dissolved oxygen levels after one hour of deoxygen-
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ating to have fallen from an Initial concentration of 5 mg/L (1.56 x 10"4 M) to below the 

detection limit of 0.2 mg/L (6.25 x 10"® M). An alternate method of testing for dissolved 

oxygen is via the bioluminescence of the firefly luciferase/luciferin reaction. Oxygen is 

necessary in this system for the production of light (McElroy & Deluca, 1985). Light 

output was measured with a liquid-nitrogen cooled charge-coupled device (CCD) 

(Princeton Instruments LN/CCD-1152UV) mounted on an HR320 (Instruments SA, Inc.) 

monochromator with a grating (1200g/mm) blazed at 5000 A. A solution of 1.0 x 10'^ M 

luciferin and 1.6 x 10"8 M luciferase and a solution of 1.0 x 10"4 M ATP were simulta

neously deoxygenated in the same apparatus as the ElAV/hypericin and ElAV/hypocrellin 

experiments. The reaction was initiated by injecting 0.5 ml of the deoxygenated ATP 

solution into the luciferin/luciferase solution. Three successive 30-second integrations 

yielded spectra that were superimposable on the background spectra of the CCD. Light 

could be generated from the reaction system by opening it to the atmosphere. Lack of 

light generation was taken to indicate that oxygen levels were negligible. 

Light-induced acidification: Attempts to observe a light-induced acidification 

in both steady-state and time-resolved measurements were performed as described 

previously (Fehr et al., 1995). Vesicles were prepared according to the procedure of 

Huang (Huang, 1969). The specific indicator used in the preparation depended on 

whether the vesicles were destined for steady-state fluorescence or transient aborption 

measurements. DPPC (Sigma) was dissolved in 95% ethanol to a final concentration 

of 2 mM. 

For steady-state fluorescence measurements, 5 mL of the DPPC solution and a 

hypocrellin/ethanol solution (1 mg/mL) were mixed and then evaporated to dryness on 

a rotovap. 1 mL of a 0.12 M NaCI/0.03M NaNg solution in which 1 mg of 2',7'-bis(2-

carboxyethyl)-5-(and 6)-carboxyfluoroscein (BCECF) (Molecular Probes) was dissolved 
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were added to the dry product, and the solution was heated to 10 degrees above the 

DPPC transition temperature (54-56 °C) until all of the DPPC/hypocrellin/indicator mix

ture was suspended. NaNg was introduced to scavenge oxygen and thus to obviate 

singlet oxygen production. Vesicles were formed by sonicating the resulting suspen

sion until optically clear using either a Cole Palmer Model 8890 bath sonicator for ap

proximately 1.5 hours or a Fisher Sonic Dismembrator Model 300 fitted with a microtip 

for 40 minutes. BCECF that was not entrapped inside the vesicle was removed by 

passing the vesicle system over a size exclusion column (Sepharose 48). 

For time-resolved measurements, 5 mL of the DPPC solution, a hypocrellin A/ 

ethanol solution (1 mg/mL), and a 3-hexadecanoyl-7-hydroxycoumarin (Molecular 

Probes)/ethanol solution (1 mg/mL) were mixed and then evaporated to dryness on a 

rotovap. 2 ml of a 0.12 M NaCI/O.OSM NaNg solution were added to the dry product and 

the solution was heated to 10 degrees above the DPPC transition temperature until all 

the DPPC/hypocrellin A/indicator mixture was suspended. Vesicles were prepared as 

described above. Since, however, all of the indicator is assumed to be partitioned into 

the bilayer, the system was not passed over a size exclusion column. 

Steady-state fluorescence excitation spectra were obtained on a SPEX 

Fluoromax. For steady-state pH experiments, hypocrellin A was excited by a 300-W 

tungsten bulb fitted with 575-nm cut-off filters. Background light with the bulb on was 

less than 0.3 % of the signal. The visible power available at the cuvette was 8-9 mW. 

Steady-state fluorescence excitation spectra were also corrected for scattering from 

vesicles and nonlinearities in collection of spectra by subtracting a blank of the differ

ence in spectra collected with lamp on and lamp off of BCECF alone in vesicles. Time-

resolved absorption data were obtained with the microsecond flash photolysis system 

(Fehr et al., 1995) generously made available to us by Professor J. H. Espenson. Ki
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netic traces were the average of 4 shots. The ©(citation pulse had a duration of -600 

ns and an energy of -70 mJ at 490 nm. 

Results and Discussion 

Table 1 compares the antiviral activity of hypericin and hypocrellin A under hy

poxic and aerobic conditions, as well as under different serum concentrations. The 

results indicate that, as we observed previously, hypericin posesses significant antiviral 

acitivity both in the presence and in the absence of oxygen. Hypocrellin A however 

posesses no antiviral acitivity without the presence of oxygen. The absence of viru

cidal activity in hypocrellin under hypoxic conditions also provides a further verification 

of the extent of deoxygenation provided by our experimental protocol. 

Table 1 also shows that the serum concentration has neglible effect under either 

hypoxic or aerobic conditions. The serum concentration was varied to evaluate wether 

the increased solubiltiy afforded by the increase in serum concentration would posi

tively effect the hypoxic experiment. Since hypericin and hypocrellin A are very hydro

phobic, the concentration in the virus membrane is determined by the initial mixing of 

the phosphate buffered saline (PBS), the virus, and the chromphore/DMSO solution. 

We hypothesized that by varying the amount of serum, we might more efficiently incor

porate the chromophore into the viral membrane and consequently obtain more effi

cient virucidal activity. The results in Table 1 indicate, however, that 0 or 10% addi

tional serum provide comparable results. 

We have previously reported that hypericin affords photoinduced acidification 

and that this may play a role in its antiviral acitivity. Much to our surprise, hypocrellin A 

does not display similar behavior under comparable conditions (Figure 2). The steady-
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Table 1. Effect of oxygen and serum concentration on the light-dependent antiviral 
activity of hypericin and hypocrellin. 

Hypericin Hypocrellin 

A B C A B C 

0%Seruma Aerobic«^ Dark 43,000 140,000 2,400 41,000 84,000 51,000 

Light'' 0 0 30 0 0 0 

Hypoxic® Dark 29,000 110,000 2,400 34,000 88,000 54,000 

Light«= 190 0 0 28,000 31,000 4,500 

10% Serum'' Aerobic"^ Dark 

LigW 

Hypoxic® Dark 

Light'' 

27,000 130,000 14,000 

0 0 140 

34,000 120,000 9,300 

0 0 880 

52,000 36,000 7500 

0 440 0 

54,000 84,000 6,000 

33,000 100,000 16,000 

® No additional serum besides that which was used to store virus was added (total serum - 1%). 

Additional serum (fetal calf serum) was added to PBS to give 10% total volume of fetal calf serum. 

^ Illumination was effected with a 300-W projector bulb fitted with a cut-off filter blocking wavelengths 

shorter than 575 nm. 

The oxygen content of the sample was determined by letting it equilibrate with the atmosphere. 

® Hypoxic conditions wereobtained by passing argon gas over the samples for 45 minutes before and 

during illumination. 
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state results displayed compare the behavior of hypericin and hypocrellin A. Similarly, 

we do not observe any evidence of transient acidification in microsecond experiments 

(not shown). We are careful in interpreting these results not to conclude that hypocrellin 

A is incapable of acidifying its surroundings. It is possible that under these experimen

tal conditions, one cannot observe such a protonation event. For example, hypocrellin 

A has slightly different solubility properties from those of hypericin. Hypericin is soluble 

in some polar protic and aprotic solvents and it is insoluble in nonpolar solvents. On the 

other hand, hypocrellin A is soluble in a wider range of polar protic and aprotic solvents 

as well as in some nonpolar solvents such as cyclohexane and benzene. Consequently, 

the absence of observed acidification may be a result of the orientation of hypocrellin A 

in the vesicle that impedes excited-state intramolecular proton transfer to the indica

tors, as we have placed them. Absolute verification of the inability of hypocrellin A to 

execute intramolecular proton transfer will require the investigation of indicator mol

ecules covalently tagged to it. 

Conclusions 

Given the gross similarities between the structures of hypocrellin A and hypericin, 

it is surprising that hypocrellin A absolutely requires oxygen for antiviral activity and 

does not produce observable intramolecular excited-state proton transfer under our 

experimental conditions. The contrast with hypericin is instructive. Hypericin clearly 

has multiple modes of light-induced antiviral activity. It also produces singlet oxygen. 

But it is known that optimum pH values are important in the life cycles of the influenza 

virus (Bullough et al., 1994) and of paramyxoviruses (Zhirnov, 1990). That hypericin is 

also a proton source may be quite significant in this context. Finally, we cannot exclude 
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Figure 2: Steady-state acidification by hypericin or hypocreliin A of DPPC vesicle inte
rior as probed by the pH indicator BCECR A decrease in fluorescence of BCECF 
indicates an increase in the proton concentration. Chromophores were excited with a 
300-W Tungsten lamp fitted with cuttoff filters {X > 575 nm) to insure that only the 
chromophore was excited. Fluorescence (as fluorescence excitation) was collected at 
535 nm and normalized at the isobestic point of 439 nm to account for dye degradation 
and leakage. Data is presented as pairs of fluorescence curves with solid lines repre
senting the system without an excitation source (lamp off) and curves with dotted lines 
representing the system with and excitation source (lamp on). 

a. Photoinduced acidification by hypericin. 
b and c. Lack of photoinduced acidification by hypocreliin A. 
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Figure 2 (cont.): Steady-state acidification by hypericin or hypocrellin A of DPPC vesicle 
interior as probed by the pH indicator BCECF A decrease in fluorescence of BCECF 
indicates an increase in the proton concentration. Chronnophores were excited with a 
300-W Tungsten lamp fitted with cuttoff filters (?l > 575 nm) to insure that only the 
chromophore was excited. Fluorescence (as fluorescence excitation) was collected at 
535 nm and normalized at the isobestic point of 439 nm to account for dye degradation 
and leakage. Data is presented as pairs of fluorescence curves with solid lines repre
senting the system without an excitation source (lamp off) and curves with dotted lines 
representing the system with and excitation source (lamp on). 

a. Photoinduced acidification by hypericin. 
b and c. Apparent photoinduced acidification by hypocrellin A. 
d. Change in fluorescence excitation intensity of BCECF alone in vesicles. 

The previous figure is corrected by subtracting the difference in the lamp on and lamp 
off of d from a, b and c. 
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as an antiviral mechanism the ability of hypericin to perform oxidation-reduction chem

istry (Redepenning & Tao, 1993). 

It appears that the more complicated and extended structure of hypericin has a 

much more important role in its antiviral activity than merely to serve as a substrate for 

hydroxyl and carbonyl groups. The data suggest that the hypericin structure greatly 

influences its preferential solubility for the viral membrane and that it may play an im

portant role in its ability to shuttle a proton away from itself. With regard to this latter 

point, previous steady-state work (Diwu et al., 1989) and preliminary time-resolved 

work from our laboratory suggest that a large percentage of hypocrellin A is already 

tautomerized in the ground state. If this is so, it is likely that exposure to light merely 

produces the original, untautomerized, form (Figure 1 a). Furthermore, the absence of a 

second hydroxyl group p to the carbonyl group may hinder charge separation that would 

be required in order to deliver the proton to the solvent, an extemal pH indicator, or, for 

example, a capsid protein of the virus (Meruelo et. al., 1992; Fehr et al., 1994). The 

results presented here indicate the utility of studying hypericin analogs in unravelling 

the origins and the mechanisms of the light-induced antiviral activity of hypericin. 
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CHAPTER 9. GENERAL CONCLUSIONS AND FUTURE WORK 

General Conclusions 

The preceeding chapters have shown that hypericin's antiviral activity is com

plex and does not depend only on the generation of singlet oxygen but instead is re

lated to hypericin's primary photophysical processes. We have provided detailed stud

ies of the primary events of hypericin and shown that upon optical excitation hypericin 

undergoes an intramolecular proton transfer, to its fluorescent state, and hence posesses 

labile protons. Hypericin is also capable of acidifying its environment and thus is also 

capable of intermolecular proton transfer. Because of experimental limitations in the 

flash photolysis system we are currently limited to only detecting protons ejected from 

the triplet state and are unable to determine if protons are also ejected from the singlet 

state. Experimental methods to overcome this are discussed in the future work section 

of this chapter. 

In addition to exploring the photophysics and mechanism of antiviral action of 

hypericin, a method of selectively targeting virally infected cells has been presented. 

This method involves incorporating the north american firefly gene into mamilian cells 

under the control of a reporter gene which would be controlled by the entry of the virus. 

This would result in production of the firelfly enzyme luciferase in the cell. Hypericin, 

tethered to the oxidizable substrate luciferin, can then be used to selectively kill infected 

cells without damaging healthy cells. 

We have also compared hypericin's antiviral activity to a related compound, 

hypocrellin A. Hypocrellin A has been reported to posess similar excited-state proper

ties and also has been shown to inactivate HIV. We find that the mechanism of action 
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of hypocrellin A is different from tliat of hypericin in that it absolutely requires oxygen to 

inactivate EIAV. In addition we find that hypocrellin A does not acidify its environment 

under the same conditions as hypericin. 

Future Work 

Although we have completed a large amount of work in attempting to deduce the 

photophysics and mechanism of hypericin's and hypocrellin's antiviral action there still 

remains a considerable number of projects to be completed. 

Hypericin 

In order to fully resolve wether a proton is also ejected from the singlet state it is 

necessary that an indicator molecule be covalently attached to hypericin. This allows 

the local concentration of hypericin/indicator to remain high while the total concentra

tion remains low enough that experiments can be performed. Pump-probe experi

ments with 1 ps resolution can then be done to look for a bleach in the indicator popu

lation as it is being protonated by hypericin or to look for quenching of the stimulated 

emission of hypericin. 

It will also be important to identify the vibrational modes which are activated 

upon excitation. Hypericin's large fluorescence quantum yield precludes using normal 

Raman spectroscopy and it is still an open question as to wether hypericin adsorbed to 

metal surfaces (necessary in SERRS) properly mimicks hypericin in solution. It is 

possible, however, to observe the vibrational modes indirectly if the excitation pulse is 

shorter than the vibrational period. The excitation pulse sets up "oscillations" which 
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can be fourier transformed into the frequency domain to yield information about the 

vibrational modes. Such a system is provided by the Ti-Sapphire system which is 

capable of producing pulses as short as 11 fs. This system is currently being built in our 

laboratory. 

In addition to providing information about vibrational modes, this ultrashort 

pulsewidth will allow us to resolve faster components. If these faster components exist 

they will yield further infomriation about the proton transfer. 

Hypocrellin A 

Much work also remains to be done on the photophysics of hypocrellin. As of yet 

we have only begun to explore the primary processes which are present and only in 

ethanol. The question still remains as to why hypocrellin absolutely requires oxygen to 

inactivate EIAV. Structural analogs such as 3,9 perylenequinone and 4,10 dihydroxy 

3,9 perylene quinone will be invaluable in deducing wether proton transfer plays an 

important role in both the photophysics and antiviral mechanism of hypocrellin. 
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APPENDIX 1 

USE OF EXPGEN.EXE 

The program EXPGEN.EXE generates a double-sided exponential pulse. The 

user Is able to adjust the full width at half maximum as an approximate guess of the 

pulse used in the pump-probe experiment. The program is used as follows: 

1. Begin the program by typing EXPGEN. 

2. A prompt will ask for the desired FWHM in picoseconds. 

3. A prompt will ask for where the maximum of the double-sided exponential 

pulse should be placed. It is Immaterial where it is placed but it should be place some

where so that it is not cut off. 

4. A prompt will ask for the window size. Since the pump probe data usually has 

ICQ points per window this is the default value. 

5. A prompt will ask for a name for the file created. 

The program will then create an ASCII file which can be read by the program SPEC

TRA. 

EXPGEN.EXE (Written in PASCAU 

program ExpGenerator; 
uses Dos.crt; 
VAR 
l.numpts: word; 
tau,xmax,fwhm,wsize,pspp,a,b: real; 
x,y; real; 
fname: string: 
datap: text; 

PROCEDURE ReadStr(varst;string); FORWARD; 
^********************* DECLARATION 



www.manaraa.com

211 

FUNCTION yes: BOOLEAN; 
LABEL rep, esc; 
VAR ch: CHAR; 

ans: ARRAY[1..3] of CHAR; 
BEGIN 
ch:=Readkey; 
If ch=#13 then begin yes:=true; goto esc end; 
repeat 
rep: 

if (ch=y) or (ch='Y') or (ch='§') or (ch='N') 
then yes:=true 

else 
if (ch='n') or (ch='N') or (ch='') o r (ch='9') then yes:=false 

else 
begin write(' ',#8#8#8#8); ch:=Readkey; goto rep end; 

case ch of 
'y': ans:='yes'; 
'Y': ans:='Yes'; 
'n': ans:=' no'; 
'N': ans:=' No'; 

ans:=' § '; 
'N': ans:=' N '; 
'': ans:=' 
'9': ans:='5«'; 

end; {case} 
writeC ',ans,#8#8#8#8); 
ch:=Readkey; 

until (ch=#13); 
esc: 
writein; 

END; {yes} 

FUNCTION BadFileName( var name: string; key: char): BOOLEAN; 
label again,againi; 
VAR 

ffile:file; 
filer :SearchRec; 
BEGIN 

againi: 
assign(ffile,name); 

{$!-} 
reset(ffile,1); 
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{$!+} 
if key='r' then begin 

if ioresultoO then 
begin wiitein; writeln; 
write(1 ©".name," • a3"* ®,l ®"0 ? [§/ ]'); 

if not yes then begin BadFileName:=taie; exit end 
else begin 

writeln:write('Q0*§®,• /E0/E* ®"6 (• t •E®t* ®*'):'); 
ReadStr(name); 
goto again 1; 

end; 
end 
else close(ffile); 

end; 
if key='w' then begin 
if ioresult=0 then 

begin writeln; 
writeln('File ',name,' already exist. Overwrite ? [Y/N/Change name]'); 

again: case readkey of 
'n':; 'N': begin BadFileName:=true; exit end; 
'C':; 'c': begin 

writeln:write('lnput new name (with extension):'); 
readstr(name); 
goto again 1; 

end; 
#13:;y:;'Y': ; 

else goto again; 
end; 

end; 
rewrite(ffile); close(ffile); 
end; 

BadFileName:=false 
END; {BadFileName} 

I********************* PROCEDURE DECLARATION 
procedure ReadStr(var st:string); 
var ch:char; 
xpos:byte; 
startx:byte; 
begin 

st:="; 
xpos:=1; 
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startx:=wherex: 
ch:=#0: 
while(ch<>#13) do begin 
gotoxy(startx,wherey); 
write(st);clreol; 
gotoxy(startx+xpos-1 .wiierey); 
ch:=readkey; 
if cii=#0 then 
ch:=readkey 
else begin 
if not (oh in [#13,#8]) 
thien begin 

st;=st+cli; 
inc(xpos); 
end; 

if (ch=#8) and (xpos>1) 
then begin 

dec(byte(st[0])); 
dec(xpos): 

end; 
end; 

end; 
writein; 

end; { proc ReadStr} 

PROCEDURE askr(var x: real); 
VAR 
st: string; 
cod: integer; 
i: real; 

label more; 
Begin 

more: 
write('<',x:8:4,'>'); 
ReadStr(st); 
if st=" then exit; 
Val(st, I, Cod); 

{ Error during conversion to integer? } 
if cod <> 0 then 

begin writein; writeln('lnput error! Try again...'); 
goto more; 
end 
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else x:=l: 
End; { proc askr} 

PROCEDURE aski(var x: word); 
VAR 
St: string: 

cod: integer: 
i: integer: 

label more: 
Begin 

more: 
write('<',x,'> '): 
ReadStr(st): 
if st=" then exit: 
Val(st, I, Cod); 

{ Error during conversion to integer? } 
if cod <> 0 then 

begin writein; writeln('lnput error I Try again...'); 
goto more; 
end 

else x:=i: 
End; { proc aski} 

PROCEDURE asks(var x: string); 
VAR 
st: string: 

label more; 
Begin 

more: 
write('<',x,'>'); 
ReadStr(st); 
if st=" then exit; 
x:=st; 

End; { proc asks} 

BEGIN 
numpts:=100: fwhm:=1.0: wsize:=6.0; 
xmax:=2; fname:='dexp.dat': 
writeInC ***** Double-Sided Exponent Function Generaton ****'); 
writein; 
repeat 
writeC F.W.H.M.{in ps)= '); ASKR(fwhm): 
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writeC Maximum location (in ps)='); ASKR(xmax); 
write(' Window size (in ps)='); askr(wsize): 
write(' Number of points='); ASKi(numpts); 
writein; write(' Output file name:'); ASKs(fname); 
if BadFileName(fname,'w') then exit; 
writeC 's everything correct ? [y/n]'); 

until yes; 
assign(datap,fname): 
rewrite(datap); 

tau:=fwhm/2/ln(2); 
a:=xmax; b:=xmax; 
for i:=0 to numpts do 
begin 
x:=i*wsize/numpts; 
if x<xmax then y:=exp((x-a)/tau) 

else y;=exp(-(x-b)/tau): 
writeln(datap,x,' ',y); 

end; 

close(datap); 
writeInC Filefname,'" has successfully created.'); 
repeat until keypressed; 

END. 
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APPENDIX 2 

USE OF ASYST PROGRAM 

The program ASYST handles data collection and basic data manipulation for 

the pump probe experiment. At the writing of this disertation the ASYST program was 

Intiated from within the Windows portion of the personal computer by double clicking on 

the ASYST prompt. A menu bar will appear. Hit the escape key and at the next prompt 

type pp. This initiates the program and a menu window should appear. Two major 

portions of the ASYST program are regularly used. The data collection window and the 

translation stage control (motor control). 

The data collection window contains numerous prompts to control the number of 

shots collected for each point, the discrimination for each shot (which should be 80-

90%), how long to wait at each point and how many scans should be acquired. The 

data is collected in an ASCII format and for long number of collections is saved auto

matically after 20 scans and stored in a file. The data is not overwritten so data can be 

extracted if the experiment becomes noisy after many scans. 

To stop the program hit any key. A prompt will ask if you wish to exit the program 

or if you wish to change either the y axis or the collection window. Changing the collec

tion window is occasionally usefull if there is a drop in power without an increase in 

noise. 

The translation stage control allows for movement of the stage when the experi

ment is not running it is usefull for finding zero time and for checking stage flatness. 

The most important thing to note is that when moving the stage backward it is neces

sary to enter a negative number into the step size. It is also important to note that 57 

steps correspond to 1 ps when moving the stage. 
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